
Oracle® Rdb for OpenVMS
Release Notes

Release 7.1.4.1

August 2005

®

Oracle Rdb Release Notes, Release 7.1.4.1 for OpenVMS

Copyright © 1984, 2005 Oracle Corporation. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information
of Oracle Corporation; they are provided under a license agreement containing restrictions on use
and disclosure and are also protected by copyright, patent and other intellectual and industrial
property laws. Reverse engineering, disassembly or decompilation of the Programs, except to the
extent required to obtain interoperability with other independently created software or as specified
by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any
problems in the documentation, please report them to us in writing. Oracle Corporation does not
warrant that this document is error-free. Except as may be expressly permitted in your license
agreement for these Programs, no part of these Programs may be reproduced or transmitted in
any form or by any means, electronic or mechanical, for any purpose, without the express written
permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs
on behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are
"commercial computer software" and use, duplication, and disclosure of the Programs, including
documentation, shall be subject to the licensing restrictions set forth in the applicable Oracle
license agreement. Otherwise, Programs delivered subject to the Federal Acquisition Regulations
are "restricted computer software" and use, duplication, and disclosure of the Programs shall be
subject to the restrictions in FAR 52.227-19, Commercial Computer Software - Restricted Rights
(June, 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be the licensee’s responsibility to take all appropriate
fail-safe, backup, redundancy, and other measures to ensure the safe use of such applications if the
Programs are used for such purposes, and Oracle Corporation disclaims liability for any damages
caused by such use of the Programs.

Oracle is a registered trademark, and Hot Standby, LogMiner for Rdb, Oracle CDD/Repository,
Oracle CODASYL DBMS, Oracle Expert, Oracle Rdb, Oracle RMU, Oracle RMUwin, Oracle
SQL/Services, Oracle Trace, and Rdb7 are trademark or registered trademarks of Oracle
Corporation. Other names may be trademarks of their respective owners.

Contents

Preface . ix

1 Installing Oracle Rdb Release 7.1.4.1

1.1 Alpha EV7 Processor Support . 1–1
1.2 Oracle Rdb V7.1 Version Numbering Enhancement 1–1
1.3 Requirements . 1–1
1.4 Invoking VMSINSTAL . 1–2
1.5 Stopping the Installation . 1–2
1.6 After Installing Oracle Rdb . 1–2
1.7 Spurious SYSVERDIF Message During Installation 1–3
1.8 Patches for OpenVMS V7.3-1 . 1–3
1.9 Oracle Rdb Release 7.1.4.1.1 Optimized for Alpha EV56 (21164A

Processor Chip) and Later Platforms . 1–4
1.9.1 AlphaServer 4000 EV56 299Mhz Not Supported by Oracle Rdb

Release Optimized for Alpha EV56 Processor 1–5
1.10 Maximum OpenVMS Version Check Added . 1–5
1.11 VMS$MEM_RESIDENT_USER Rights Identifier Required 1–5

2 Software Errors Fixed in Oracle Rdb Release 7.1.4.1

2.1 Software Errors Fixed That Apply to All Interfaces 2–1
2.1.1 Memory Leak With RMU /OPEN /STATISTICS=IMPORT 2–1
2.1.2 Query With Two ORDER BY Clauses Returns Wrong Result 2–1
2.1.3 Database Shutdown Interruped by Re-attach May Cause Lost ALS

Process . 2–3
2.1.4 Query With BETWEEN Clause Slows Down Using Index Full

Scan . 2–3
2.1.5 Database Recovery Process May Fail When AIJs are Full 2–5
2.1.6 Count Distinct(fld) May Fail When Sorted Ranked Indexes are Used

. 2–6
2.1.7 Left Outer Join View Query With Constant Columns Returns Wrong

Result . 2–6
2.1.8 Bugchecks at DIOMARK$NEW_SNAP_PAGE + 000000D0 When Area

Added Online . 2–7
2.1.9 Query with GROUP BY and ORDER BY Returned Rows in the Wrong

Order . 2–8
2.1.10 Query with GROUP BY, ORDER BY Returned Rows in the Wrong

Order . 2–11
2.1.11 Truncating Empty Table Leaves Uncommited Transaction in Journal

. 2–14
2.1.12 Bugchecks in AIJUTL$FREE_DIRTY_ARBS When Journals Full 2–14
2.1.13 Query With Shared Expressions in OR Predicates Returns Wrong

Result . 2–15

iii

2.1.14 Failed Users Not Recovered if DBR Startup Fails 2–17
2.1.15 Various Errors or Corruption of Ranked Indexes 2–18
2.1.16 Wrong Results Generated by Query With Common Boolean Elements

. 2–19
2.1.17 Wrong Result From Query With Common Join Booleans in OR 2–20
2.1.18 Wrong Result Selecting From a Derived Table of UNION Clause 2–21
2.1.19 Incorrect Foreign Key Constraint Behavior on Update 2–23
2.1.20 Bugchecks Accessing a REAL or DOUBLE PRECISION Column 2–24
2.1.21 Connection Name Longer than 31 Octets Mishandled 2–25
2.1.22 Loss of NULL Setting for Imported LIST OF BYTE VARYING

Columns . 2–25
2.1.23 Bugchecks in PSII2SPLITNODE When Using Ranked Indexes 2–26
2.1.24 Wrong Result from UNION Query with Outer Join Leg 2–27
2.1.25 COSI_MEM_FREE_VMLIST Bugcheck with Vertical Partitioning . . . 2–33
2.1.26 Bugcheck from INSERT With Partition Index 2–33
2.1.27 Journals Not Initialized After Backup if Backing Up to Tape

Device . 2–34
2.1.28 Constant Snapshot File Growth . 2–35
2.1.29 Select Count Query with Host Variable Returns Wrong Result 2–36
2.1.30 UNION Join Query with Host Variable in the Predicate Returns

Wrong Result . 2–37
2.1.31 Bugcheck in COSI_MEM_FREE_VMLIST After Update of Ranked

Index . 2–39
2.1.32 ILLPAGCNT Exception Reading Large Table with a Dynamic

Tactic . 2–39
2.2 SQL Errors Fixed . 2–40
2.2.1 SQL Precompiler (Pascal) Generates Incorrect Definition for

SQL_TINYINT Type . 2–40
2.2.2 LOCK TABLE May Bugcheck if DROP TABLE Appears in Same

Transaction . 2–40
2.2.3 CREATE VIEW May Fail With a "Deadlock on Client" Error 2–40
2.2.4 TRUNCATE TABLE Did Not Release Strong Lock on Table Until

DISCONNECT . 2–41
2.2.5 COMMENT ON COLUMN Failed When Applied to a View Definition

. 2–41
2.2.6 Unexpected SQL-F-CURALROPE Following Compound Statement or

CALL Statement . 2–42
2.2.7 Unexpected Results When Using Host Variables in Subselects 2–42
2.2.8 Unexpected Bugcheck Reported When LIST OF BYTE VARYING

Column has NOT NULL Constraint . 2–43
2.2.9 DEFAULT Expression Fails for Declared Temporary Tables 2–44
2.2.10 DEFAULT Inherited from Domain now Displayed by SHOW TABLE

. 2–44
2.2.11 Dynamic SQL Rounds Results from Division Operator 2–45
2.2.12 SQL Incorrectly Truncated Multi-octet Characters when Using

GB18030 and UTF8 Character Sets . 2–46
2.2.13 New COMMIT EVERY Clause Added to IMPORT DATABASE

Command . 2–46
2.2.14 Unexpected SQL-F-BADBLOB Reported by SQL IMPORT 2–47
2.3 RDO and RDML Errors Fixed . 2–48
2.3.1 Unexpected NOT_LARDY Following LOCK_CONFLICT Exception . . . 2–48
2.4 RMU Errors Fixed . 2–49
2.4.1 RMU Extract Might Extract Incomplete Routine Definition 2–49
2.4.2 Unexpected ACCVIO and BUGCHECK from RMU Extract 2–49

iv

2.4.3 RMU Load Did Not Handle UNSPECIFIED Character Set in RRD
File . 2–50

2.4.4 RMU/CONVERT Ignored Storage Maps Defined for Optional System
Tables . 2–50

2.4.5 RMU /UNLOAD From Remote Database Specification 2–51
2.4.6 RMU/SHOW AFTER/BACKUP May Stall When AIJs Are Full 2–51
2.4.7 Problem with LITERAL Character Set and Embedded Quotes in RMU

EXTRACT . 2–51
2.5 LogMiner Errors Fixed . 2–52
2.5.1 Incorrect Elimination of AIJ When Using RMU /UNLOAD

/AFTER_JOURNAL /ORDER_AIJ_FILES /RESTART 2–52
2.5.2 RMU /UNLOAD /AFTER_JOURNAL /[NO]SYMBOLS 2–52
2.5.3 RMU /UNLOAD /AFTER_JOURNAL Incorrect Settings in Null Bit

Vector . 2–53
2.5.4 RMU /UNLOAD /AFTER_JOURNAL Field Order Clarification 2–53
2.6 Row Cache Errors Fixed . 2–55
2.6.1 RMU /CLOSE /ABORT=DELPRC /WAIT Hang 2–55
2.6.2 Long Running Transaction Hangs After RMU/CHECKPOINT 2–55
2.7 Hot Standby Errors Fixed . 2–56
2.7.1 Excessive CPU Consumed by LRS Process . 2–56
2.7.2 LRS Bugchecks in DIOLAREA$SCAN_ABM_CHAIN 2–56

3 Enhancements Provided in Oracle Rdb Release 7.1.4.1

3.1 Enhancements Provided in Oracle Rdb Release 7.1.4.1 3–1
3.1.1 Support Added for ANSI C Comments . 3–1
3.1.2 New Rdb Character Set GB18030 . 3–1
3.1.3 New GET DIAGNOSTICS Keyword . 3–1
3.1.4 Buffer Memory Now Exported/Imported . 3–2
3.1.5 RMU /UNLOAD Qualifier /REOPEN_COUNT 3–2
3.1.6 New DEFAULTS Qualifier Added to RMU Extract 3–2
3.1.7 New RESTART WITH Clause for ALTER SEQUENCE 3–4
3.1.8 ALTER VIEW Statement . 3–4

4 Documentation Corrections, Additions and Changes

4.1 Documentation Corrections . 4–1
4.1.1 Incorrect Example Under RMU Unload Command 4–1
4.1.2 RDM$BIND_MAX_DBR_COUNT Documentation Clarification 4–1
4.1.3 Database Server Process Priority Clarification 4–2
4.1.4 Explanation of SQL$INT in a SQL Multiversion Environment and

How to Redefine SQL$INT . 4–3
4.1.5 Documentation Omitted Several Reserved Words 4–4
4.1.6 Using Databases from Releases Earlier Than V6.0 4–4
4.1.7 New RMU/BACKUP Storage Area Assignment With Thread Pools . . . 4–5
4.1.8 RDM$BIND_LOCK_TIMEOUT_INTERVAL Overrides the Database

Parameter . 4–5
4.1.9 New Request Options for RDO, RDBPRE and RDB$INTERPRET 4–5
4.2 Address and Phone Number Correction for Documentation 4–7
4.3 Online Document Format and Ordering Information 4–8
4.4 New and Changed Features in Oracle Rdb Release 7.1 4–8
4.4.1 PERSONA is Supported in Oracle SQL/Services 4–8
4.4.2 NEXTVAL and CURRVAL Pseudocolumns Can Be Delimited

Identifiers . 4–8

v

4.4.3 Only=select_list Qualifier for the RMU Dump After_Journal
Command . 4–9

4.5 Oracle Rdb7 and Oracle CODASYL DBMS Guide to Hot Standby
Databases . 4–10

4.5.1 Restrictions Lifted on After-Image Journal Files 4–10
4.5.2 Changes to RMU Replicate After_Journal ... Buffer Command 4–10
4.5.3 Unnecessary Command in the Hot Standby Documentation 4–11
4.5.4 Change in the Way RDMAIJ Server is Set Up in UCX 4–11
4.5.5 CREATE INDEX Operation Supported for Hot Standby 4–12
4.6 Oracle Rdb7 for OpenVMS Installation and Configuration Guide 4–12
4.6.1 Suggestion to Increase GH_RSRVPGCNT Removed 4–12
4.6.2 Prerequisite Software . 4–12
4.6.3 Defining the RDBSERVER Logical Name . 4–13
4.7 Guide to Database Design and Definition . 4–13
4.7.1 Lock Timeout Interval Logical Incorrect . 4–13
4.7.2 Example 4-13 and Example 4-14 Are Incorrect 4–14
4.8 Oracle RMU Reference Manual, Release 7.0 . 4–14
4.8.1 RMU Unload After_Journal Null Bit Vector Clarification 4–14
4.8.2 New Transaction_Mode Qualifier for Oracle RMU Commands 4–17
4.8.3 RMU Server After_Journal Stop Command . 4–18
4.8.4 Incomplete Description of Protection Qualifier for RMU Backup

After_Journal Command . 4–18
4.8.5 RMU Extract Command Options Qualifier . 4–19
4.8.6 RDM$SNAP_QUIET_POINT Logical is Incorrect 4–19
4.8.7 Using Delta Time with RMU Show Statistics Command 4–19
4.9 Oracle Rdb7 Guide to Database Performance and Tuning 4–19
4.9.1 Dynamic OR Optimization Formats . 4–19
4.9.2 Oracle Rdb Logical Names . 4–19
4.9.3 Waiting for Client Lock Message . 4–20
4.9.4 RDMS$TTB_HASH_SIZE Logical Name . 4–21
4.9.5 Error in Updating and Retrieving a Row by Dbkey Example 3-22 4–21
4.9.6 Error in Calculation of Sorted Index in Example 3-46 4–23
4.9.7 Documentation Error in Section C.7 . 4–23
4.9.8 Missing Tables Descriptions for the RDBEXPERT Collection Class . . . 4–24
4.9.9 Missing Columns Descriptions for Tables in the Formatted

Database . 4–24
4.9.10 A Way to Find the Transaction Type of a Particular Transaction

Within the Trace Database . 4–32
4.9.11 Using Oracle TRACE Collected Data . 4–33
4.9.12 AIP Length Problems in Indexes that Allow Duplicates 4–34
4.9.13 RDM$BIND_MAX_DBR_COUNT Documentation Clarification 4–36
4.10 Oracle Rdb7 Guide to SQL Programming . 4–36
4.10.1 Location of Host Source File Generated by the SQL Precompiler 4–36
4.10.2 Remote User Authentication . 4–37
4.10.3 Additional Information About Detached Processes 4–37
4.11 Guide to Using Oracle SQL/Services Client APIs . 4–39

vi

5 Known Problems and Restrictions

5.1 Known Problems and Restrictions in All Interfaces 5–1
5.1.1 RDO IMPORT Does Not Support FORWARD_REFERENCES Created

by SQL EXPORT . 5–1
5.1.2 New Attributes Saved by RMU/LOAD Incompatible With Prior

Versions . 5–2
5.1.3 RDMS-E-RTNSBC_INITERR, Cannot init. external routine server

site executor . 5–2
5.1.4 SYSTEM-F-INSFMEM Fatal Error With SHARED MEMORY

IS SYSTEM or LARGE MEMORY IS ENABLED in Galaxy
Environment . 5–3

5.1.5 Oracle Rdb and OpenVMS ODS-5 Volumes . 5–3
5.1.6 Optimization of Check Constraints . 5–4
5.1.7 Using Databases from Releases Earlier Than V6.0 5–6
5.1.8 Carryover Locks and NOWAIT Transaction Clarification 5–6
5.1.9 Unexpected Results Occur During Read-Only Transactions on a Hot

Standby Database . 5–7
5.1.10 Both Application and Oracle Rdb Using SYS$HIBER 5–7
5.1.11 Bugcheck Dump Files with Exceptions at COSI_CHF_SIGNAL 5–8
5.1.12 Read-only Transactions Fetch AIP Pages Too Often 5–9
5.1.13 Row Cache Not Allowed While Hot Standby Replication is Active 5–9
5.1.14 Excessive Process Page Faults and other Performance Considerations

During Oracle Rdb Sorts . 5–9
5.1.15 Control of Sort Work Memory Allocation . 5–11
5.1.16 The Halloween Problem . 5–11
5.2 SQL Known Problems and Restrictions . 5–13
5.2.1 Interchange File (RBR) Created by Oracle Rdb Release 7.1 Not

Compatible With Previous Releases . 5–13
5.2.2 System Relation Change for International Database Users 5–13
5.2.3 Single Statement LOCK TABLE is Not Supported for SQL Module

Language and SQL Precompiler . 5–13
5.2.4 Multistatement or Stored Procedures May Cause Hangs 5–14
5.2.5 Use of Oracle Rdb from Shareable Images . 5–15
5.3 Oracle RMU Known Problems and Restrictions . 5–16
5.3.1 RMU/BACKUP MAX_FILE_SIZE Option Has Been Disabled 5–16
5.3.2 RMU Convert Fails When Maximum Relation ID is Exceeded 5–16
5.3.3 RMU Unload /After_Journal Requires Accurate AIP Logical Area

Information . 5–17
5.3.4 Do Not Use HYPERSORT with RMU Optimize After_Journal

Command . 5–18
5.3.5 Changes in EXCLUDE and INCLUDE Qualifiers for RMU Backup . . 5–18
5.3.6 RMU Backup Operations Should Use Only One Type of Tape

Drive . 5–19
5.3.7 RMU/VERIFY Reports PGSPAMENT or PGSPMCLST Errors 5–19
5.4 Known Problems and Restrictions in All Interfaces for Release 7.0 and

Earlier . 5–20
5.4.1 Converting Single-File Databases . 5–20
5.4.2 Row Caches and Exclusive Access . 5–20
5.4.3 Exclusive Access Transactions May Deadlock with RCS Process 5–21
5.4.4 Strict Partitioning May Scan Extra Partitions 5–21
5.4.5 Restriction When Adding Storage Areas with Users Attached to

Database . 5–21
5.4.6 Support for Single-File Databases to Be Dropped in a Future

Release . 5–22

vii

5.4.7 Multiblock Page Writes May Require Restore Operation 5–22
5.4.8 Replication Option Copy Processes Do Not Process Database Pages

Ahead of an Application . 5–22
5.5 SQL Known Problems and Restrictions for Oracle Rdb Release 7.0 and

Earlier . 5–23
5.5.1 SQL Does Not Display Storage Map Definition After Cascading Delete

of Storage Area . 5–23
5.5.2 ARITH_EXCEPT or Incorrect Results Using LIKE IGNORE

CASE . 5–24
5.5.3 Different Methods of Limiting Returned Rows from Queries 5–24
5.5.4 Suggestions for Optimal Use of SHARED DATA DEFINITION Clause

for Parallel Index Creation . 5–25
5.5.5 Side Effect When Calling Stored Routines . 5–27
5.5.6 Considerations When Using Holdable Cursors 5–28
5.5.7 AIJSERVER Privileges . 5–28

Examples

3–1 Changing the comment on a view . 3–7
3–2 Changing the columns results of a view definition 3–8
3–3 Changing the WITH CHECK OPTION constraint of a view

definition . 3–9

Tables

4–1 Server Process Priority Logical Names . 4–2
4–2 Objects and Their Hexadecimal Type Value . 4–21
4–3 Columns for Table EPC$1_221_TRANS_TPB . 4–24
4–4 Columns for Table EPC$1_221_TRANS_TPB_ST 4–24
4–5 Columns for Table EPC$1_221_DATABASE . 4–24
4–6 Columns for Table EPC$1_221_REQUEST_ACTUAL 4–25
4–7 Columns for Table EPC$1_221_TRANSACTION 4–28
4–8 Columns for Table EPC$1_221_REQUEST_BLR 4–32
4–9 Request Types . 4–34
5–1 Sort Memory Logicals . 5–11
5–2 Elapsed Time for Index Creations . 5–26

viii

Preface

Purpose of This Manual
This manual contains release notes for Oracle Rdb Release 7.1.4.1. The
notes describe changed and enhanced features; upgrade and compatibility
information; new and existing software problems and restrictions; and software
and documentation corrections.

Intended Audience
This manual is intended for use by all Oracle Rdb users. Read this manual before
you install, upgrade, or use Oracle Rdb Release 7.1.4.1.

Document Structure
This manual consists of the following chapters:

Chapter 1 Describes how to install Oracle Rdb Release 7.1.4.1.

Chapter 2 Describes software errors corrected in Oracle Rdb Release 7.1.4.1.

Chapter 3 Describes enhancements introduced in Oracle Rdb Release 7.1.4.1.

Chapter 4 Provides information not currently available in the Oracle Rdb
documentation set.

Chapter 5 Describes problems, restrictions, and workarounds known to exist in
Oracle Rdb Release 7.1.4.1.

ix

1
Installing Oracle Rdb Release 7.1.4.1

This software update is installed using the standard OpenVMS Install Utility.

NOTE

All Oracle Rdb Release 7.1 kits are full kits. There is no requirement to
install any prior release of Oracle Rdb when installing new Rdb Release
7.1 kits.

1.1 Alpha EV7 Processor Support
For this release of Oracle Rdb, the Alpha EV7 (also known as the Alpha 21364)
processor is the newest processor supported.

1.2 Oracle Rdb V7.1 Version Numbering Enhancement
Previously, the Oracle Rdb version number was specified as 4 digits (for example,
version ‘‘7.1.0.2’’). Starting with Oracle Rdb Release 7.1.1, an additional, fifth,
digit has been added to the kit version number. This new digit is intended to
indicate an optimization level of the Rdb software. The use of this new digit
is to indicate a ‘‘generic’’ kit (final digit of zero) for all Alpha processors or a
‘‘performance’’ kit that will run on a subset of the supported platforms (final
digit of 1). In the future, additional values may be specified to indicate other
performance or platform options.

For Oracle Rdb Release 7.1.4.1, the two kits are 7.1.4.1.0 (compiled for all Alpha
processor types) and 7.1.4.1.1 (compiled for EV56 and later Alpha processors).
These kits offer identical functionality and differ only in a potential performance
difference.

1.3 Requirements
The following conditions must be met in order to install this software:

• Oracle Rdb must be shutdown before you install this update kit. That is, the
command file SYS$STARTUP:RMONSTOP71.COM should be executed before
proceeding with this installation. If you have an OpenVMS cluster, you must
shutdown the Rdb 7.1 monitor on all nodes in the cluster before proceeding.

• The installation requires approximately 280,000 blocks for OpenVMS Alpha
systems.

• If you are running Hot Standby and you are upgrading from a version of
Oracle Rdb 7.1 prior to 7.1.1, you must install this kit on both the master
and the standby systems prior to restarting Hot Standby. This requirement

Installing Oracle Rdb Release 7.1.4.1 1–1

is necessary due to changes to the message format used to transmit journal
state information from the master to the standby system.

1.4 Invoking VMSINSTAL
To start the installation procedure, invoke the VMSINSTAL command procedure
as in the following examples.

To install the Oracle Rdb for OpenVMS Alpha kit that is compiled to run on all
Alpha platforms:

@SYS$UPDATE:VMSINSTAL RDBV71410AM device-name OPTIONS N

To install the Oracle Rdb for OpenVMS Alpha kit that is performance targeted
for Alpha EV56 and later platforms:

@SYS$UPDATE:VMSINSTAL RDBV71411AM device-name OPTIONS N

device-name

Use the name of the device on which the media is mounted. If the device is a disk
drive, you also need to specify a directory. For example: DKA400:[RDB.KIT]

OPTIONS N

This parameter prints the release notes.

The full Oracle Rdb Release 7.1 Installation Guide is also available on MetaLink
in Adobe Acrobat PDF format:

Top Tech Docs\Oracle Rdb\Documentation\Rdb 7.1 Installation and Configuration
Guide

1.5 Stopping the Installation
To stop the installation procedure at any time, press Ctrl/Y. When you press
Ctrl/Y, the installation procedure deletes all files it has created up to that point
and exits. You can then start the installation again.

If VMSINSTAL detects any problems during the installation, it notifies you and a
prompt asks if you want to continue. You might want to continue the installation
to see if any additional problems occur. However, the copy of Oracle Rdb installed
will probably not be usable.

1.6 After Installing Oracle Rdb
This update provides a new Oracle Rdb Oracle TRACE facility definition. Any
Oracle TRACE selections that reference Oracle Rdb will need to be redefined
to reflect the new facility version number for the updated Oracle Rdb facility
definition, ‘‘RDBVMSV7.1’’.

If you have Oracle TRACE installed on your system and you would like to collect
for Oracle Rdb, you must insert the new Oracle Rdb facility definition included
with this update kit.

The installation procedure inserts the Oracle Rdb facility definition into a library
file called EPC$FACILITY.TLB. To be able to collect Oracle Rdb event-data using
Oracle TRACE, you must move this facility definition into the Oracle TRACE
administration database. Perform the following steps:

1. Extract the definition from the facility library to a file (in this case,
RDBVMS.EPC$DEF).

1–2 Installing Oracle Rdb Release 7.1.4.1

$ LIBRARY /TEXT /EXTRACT=RDBVMSV7.1 -
_$ /OUT=RDBVMS.EPC$DEF SYS$SHARE:EPC$FACILITY.TLB

2. Insert the facility definition into the Oracle TRACE administration database.

$ COLLECT INSERT DEFINITION RDBVMS.EPC$DEF /REPLACE

Note that the process executing the INSERT DEFINITION command must use
the version of Oracle Rdb that matches the version used to create the Oracle
TRACE administration database or the INSERT DEFINITION command will fail.

1.7 Spurious SYSVERDIF Message During Installation
When installing Oracle Rdb on an OpenVMS V8.2 Alpha system, depending on
the previous version of Oracle Rdb installed and how Oracle Rdb was shut down
prior to the installation, a message similar to the following may be displayed
during the installation procedure:

%INSTALL-E-FAIL, failed to REPLACE entry for
DISK$VMS82:<SYS0.SYSCOMMON.SYSLIB>RDMXSMP71.EXE
-INSTALL-E-SYSVERDIF, system version mismatch - please relink

This message may be safely ignored. Using the RMONSTOP.COM (for standard
installations) or RMONSTOP71.COM (for multi-version installations) procedure
to shut down Oracle Rdb prior to the installation may help avoid the message.

1.8 Patches for OpenVMS V7.3-1
Several problems that affect installations using Oracle Rdb on OpenVMS V7.3-
1 are corrected in patch kits available from HP OpenVMS support. Oracle
recommends that you consult with Hewlett-Packard and install these patch kits
(or their replacements) to correct or avoid the following problems:

• VMS731_SYS-V0400 corrects the following problems seen with Oracle Rdb:

• When using Oracle Rdb Galaxy support, or memory-resident global
sections, processes enter a permanent RWAST state at image exit. The
system must be rebooted to remove the process and continue normal
operations. Note that when using Oracle Rdb Release 7.1.2 databases
with SHARED MEMORY IS PROCESS RESIDENT attribute, the Row
Cache feature and caches with the SHARED MEMORY IS SYSTEM,
LARGE MEMORY IS ENABLED, or RESIDENT attributes, or in an
OpenVMS Galaxy configuration with Oracle Rdb Galaxy support enabled,
you are at an elevated risk of experiencing this problem.

Configurations that do not have this patch, or it’s future replacement,
applied will not be supported by Oracle if the SHARED MEMORY IS
PROCESS RESIDENT, the Row Cache, or Galaxy support features are in
use. If you are not using these features, then the patch or it’s replacement
is not mandatory. However, Oracle still strongly recommends that it be
used.

• Applications using the Oracle Rdb Row Cache or AIJ Log Server (ALS)
features would sometimes have their server processes hang in HIB
(hibernate) state.

• VMS731_SYSLOA-V0100 corrects the following problem seen with Oracle
Rdb:

• In an OpenVMS cluster environment, unreported deadlocks and hangs
can occur. This problem is sometimes characterized by an Oracle Rdb

Installing Oracle Rdb Release 7.1.4.1 1–3

blocking lock incorrectly being shown as owned by the system (in other
words, with a zero PID).

1.9 Oracle Rdb Release 7.1.4.1.1 Optimized for Alpha EV56 (21164A
Processor Chip) and Later Platforms

Oracle will be releasing Oracle Rdb 7.1 and later kits in parallel build streams - a
‘‘generic’’ kit that will run on all certified and supported Alpha platforms as well
as a ‘‘performance’’ kit that will run on a subset of the supported platforms. The
performance kit is intended for those customers with ‘‘newer’’ Alpha processor
chips who need higher levels of performance than are offered by the generic kits.
The performance kits are otherwise functionally identical to the generic kits.

Oracle will continue to release both types of kits for Oracle Rdb Release 7.1 as
long as there is significant customer interest in the generic kit.

For improved performance on current generation Alpha processors, Oracle Rdb
Release 7.1.4.1.1 is compiled explicitly for Alpha EV56 and later systems. This
version of Oracle Rdb requires a system with a minimum Alpha processor chip of
EV56 and a maximum processor chip of Alpha EV7 (known as the Alpha 21364).

Oracle Rdb Release 7.1.4.1.1 is functionally equivalent to Oracle Rdb Release
7.1.4.1.0 and was built from the same source code. The only difference is a
potentially improved level of performance. Oracle Rdb Releases 7.1.4.1.0 and
7.1.4.1.1 are certified on all supported Alpha processor types (up to and including
the Alpha EV7 processor).

In Release 7.1.4.1.1, Oracle Rdb is explicitly compiled for EV56 and later Alpha
processors such that the generated instruction stream can utilize the byte/word
extension (BWX) of the Alpha architecture. Additionally, this kit is compiled with
instruction tuning biased for performance of Alpha EV6 and later systems that
support quad-issue instruction scheduling.

Note that you should not install Release 7.1.4.1.1 of Oracle Rdb on Alpha EV4,
EV45 or EV5 systems. These processor types do not support the required byte
/word extension (BWX) of the Alpha architecture. Also ensure that all systems
in a cluster sharing the system disk are using a minimum of the Alpha EV56
processor.

To easily determine the processor type of a running OpenVMS Alpha system,
use the CLUE CONFIG command of the OpenVMS System Dump Analyzer
utility (accessed with the ANALYZE/SYSTEM command). The ‘‘CPU TYPE’’ field
indicates the processor type as demonstrated in the following example from an
HP AlphaServer GS140 6/525 system with an EV6 (21264) processor:

$ ANALYZE/SYSTEM
SDA> CLUE CONFIG
System Configuration:

.

.

.
Per-CPU Slot Processor Information:
CPU ID 00 CPU State rc,pa,pp,cv,pv,pmv,pl
CPU Type EV6 Pass 2.3 (21264)
PAL Code 1.96-1 Halt PC 00000000.20000000

.

.

.

1–4 Installing Oracle Rdb Release 7.1.4.1

1.9.1 AlphaServer 4000 EV56 299Mhz Not Supported by Oracle Rdb Release
Optimized for Alpha EV56 Processor

Oracle Rdb releases that are optimized for the Alpha EV56 and later processors
are not able to run on the AlphaServer 4000 with the 299Mhz EV56 processor.
Though this CPU claims to be an EV56, it does not, in fact, implement the byte
/word instruction set as required.

According to information on the HP web site, this problem may be present in
the AlphaServer 4000 or 4100 systems with a processor module of KN304-FA
or KN304-FB. The systems effected appear to include the AlphaServer 4x00
5/300 pedestal, cabinet and rackmount systems: DA-51FAB-ED/-FD/-GB or
DA-53GEB-CA/-EA/-FA/-GA.

The indicated CPU is not able to run Oracle Rdb releases that are optimized for
the Alpha EV56 and later processors. This effects Oracle Rdb Releases optimized
for the Alpha EV56 and later processors.

Possible workarounds include updating the system to an EV56 module for the
AlphaServer 4x00 that is later than the KN304-FA or FB (ie a clock speed greater
than 300Mhz). Some of the possible modules would include: KN304-AA 400mhz,
KN304-DA 466mhz, B3005-CA 533mhz, B3006-EB 600mhz.

Otherwise, an Oracle Rdb release that is not optimized for the Alpha EV56 and
later processors must be used (such as Oracle Rdb Releases 7.1.4.1.0)

Please contact your HP AlphaServer hardware vendor for additional information.

1.10 Maximum OpenVMS Version Check Added
As of Oracle Rdb7 Release 7.0.1.5, a maximum OpenVMS version check has
been added to the product. Oracle Rdb has always had a minimum OpenVMS
version requirement. With 7.0.1.5 and for all future Oracle Rdb releases, we have
expanded this concept to include a maximum VMS version check and a maximum
supported processor hardware check. The reason for this check is to improve
product quality.

OpenVMS Version 8.2-x is the maximum supported version of OpenVMS.

The check for the OpenVMS operating system version and supported hardware
platforms is performed both at installation time and at runtime. If either a
non-certified version of OpenVMS or hardware platform is detected during
installation, the installation will abort. If a non-certified version of OpenVMS or
hardware platform is detected at runtime, Oracle Rdb will not start.

1.11 VMS$MEM_RESIDENT_USER Rights Identifier Required
Oracle Rdb Version 7.1 introduced additional privilege enforcement for the
database or row cache attributes RESIDENT, SHARED MEMORY IS SYSTEM
and LARGE MEMORY IS ENABLED. If a database utilizes any of these features,
then the user account that opens the database must be granted the VMS$MEM_
RESIDENT_USER rights identifier.

Oracle recommends that the RMU/OPEN command be used when utilizing these
features.

Installing Oracle Rdb Release 7.1.4.1 1–5

2
Software Errors Fixed in Oracle Rdb Release

7.1.4.1

This chapter describes software errors that are fixed by Oracle Rdb Release
7.1.4.1.

2.1 Software Errors Fixed That Apply to All Interfaces
2.1.1 Memory Leak With RMU /OPEN /STATISTICS=IMPORT

Starting with Oracle Rdb Release 7.1.2, when using the persistant statistics
functionality, the Oracle Rdb monitor process (RDMMON71) would ‘‘leak’’
memory every 30 minutes. The monitor process could eventually run out of P0
virtual address space and could stop accepting new database open requests.

This problem has been corrected in Oracle Rdb Release 7.1.4.1. The monitor
process no longer leaks memory when it performs periodic statistics checkpoint
operations.

2.1.2 Query With Two ORDER BY Clauses Returns Wrong Result
Bugs 4086431, 2882908 and 1329838

The following query, which contains two ORDER BY clauses, returns results in
the wrong order.

SELECT TMP.LOT_NO, TMP.CID, TMP.TIME FROM
(SELECT CLOT.LOT_NO,

CAS.CID,
T2.TIME

FROM CLOT AS T1,HLOT AS T2, CAS AS T3,
(SELECT LOT_NO, MAX(TIME) FROM HLOT GROUP BY LOT_NO)
AS TMP1 (LOT_NO, TIME)

WHERE (T1.LOT_STATUS = ’CMP’) AND
T1.LOT_NO = T2.LOT_NO AND
T1.CID=CAS.CID AND
T2.LOT_NO = TMP1.LOT_NO AND
T2.TIME = TMP1.TIME

ORDER BY T2.LOT_NO) AS TMP
ORDER BY TMP.LOT_NO;
Tables:
0 = CLOT
1 = HLOT
2 = CAS
3 = HLOT

Merge of 1 entries
Merge block entry 1
Cross block of 3 entries
Cross block entry 1
Conjunct: 0.CID = 2.CID
Match

Outer loop (zig-zag)
Index only retrieval of relation 2:CAS

Software Errors Fixed in Oracle Rdb Release 7.1.4.1 2–1

Index name CASI1 [0:0]
Inner loop (zig-zag)
Conjunct: 0.LOT_STATUS = ’CMP’
Get Retrieval by index of relation 0:CLOT
Index name CLOTI2 [0:0]

Cross block entry 2
Index only retrieval of relation 1:HLOT
Index name HLOTI1 [1:1]
Keys: 0.LOT_NO = 1.LOT_NO

Cross block entry 3
Conjunct: (1.LOT_NO = 3.LOT_NO) AND (1.TIME = <mapped field>)
Merge of 1 entries
Merge block entry 1
Aggregate: 0:MAX (3.TIME)
Index only retrieval of relation 3:HLOT
Index name HLOTI1 [1:1]
Keys: 3.LOT_NO = 0.LOT_NO

LOT_NO CID TIME
HK1L100152 SH011004 21-DEC-2000 16:23:56.00
HK4L200099 SH011020 1-JUN-2001 11:36:44.00
HK1L100343 SH015004 21-DEC-2000 16:34:21.00
CIMP402051 SK025017 1-DEC-2004 02:45:59.00
MR6NZ6N027 SM091027 18-NOV-2003 10:43:21.00
5 rows selected

The query works if the outermost ORDER BY clause is removed.

SELECT TMP.LOT_NO, TMP.CID, TMP.TIME FROM
(SELECT T1.LOT_NO,

CAS.CID,
T2.TIME

FROM CLOT AS T1,HLOT AS T2, CAS AS T3,
(SELECT LOT_NO, MAX(TIME) FROM HLOT GROUP BY LOT_NO)
AS TMP1 (LOT_NO, TIME)

WHERE (T1.LOT_STATUS = ’CMP’) AND
T1.LOT_NO = T2.LOT_NO AND
T1.CID=CAS.CID AND
T2.LOT_NO = TMP1.LOT_NO AND
T2.TIME = TMP1.TIME

ORDER BY T2.LOT_NO) AS TMP
!ORDER BY TMP.LOT_NO <== Commented out
;
Tables:
0 = CLOT
1 = HLOT
2 = CAS
3 = HLOT

Merge of 1 entries
Merge block entry 1
Cross block of 4 entries
Cross block entry 1
Conjunct: 0.LOT_STATUS = ’CMP’
Get Retrieval by index of relation 0:CLOT
Index name CLOTI1 [0:0]

Cross block entry 2
Index only retrieval of relation 2:CAS
Index name CASI1 [1:1] Direct lookup
Keys: 0.CID = 2.CID

Cross block entry 3
Index only retrieval of relation 1:HLOT
Index name HLOTI1 [1:1]
Keys: 0.LOT_NO = 1.LOT_NO

Cross block entry 4
Conjunct: (1.LOT_NO = 3.LOT_NO) AND (1.TIME = <mapped field>)
Merge of 1 entries
Merge block entry 1

2–2 Software Errors Fixed in Oracle Rdb Release 7.1.4.1

Aggregate: 0:MAX (3.TIME)
Index only retrieval of relation 3:HLOT
Index name HLOTI1 [1:1]
Keys: 3.LOT_NO = 0.LOT_NO

LOT_NO CID TIME
CIMP402051 SK025017 1-DEC-2004 02:45:59.00
HK1L100152 SH011004 21-DEC-2000 16:23:56.00
HK1L100343 SH015004 21-DEC-2000 16:34:21.00
HK4L200099 SH011020 1-JUN-2001 11:36:44.00
MR6NZ6N027 SM091027 18-NOV-2003 10:43:21.00
5 rows selected

Notice that the problem query applies the index CASI1 with the column 2.CID at
the outermost cross block while the good query applies the index CLOTI1 with
the column 0.LOT_NO, which is the correct one referenced by the ORDER BY
clause.

The key parts of this cursor query which contributed to the situation leading to
the error are these:

1. The cursor query contains the outer SELECT statement as a derived table
wrapped around the inner SELECT statment joining three tables and an
aggregate query with MAX and GROUP BY clause.

2. The inner SELECT statement contains a WHERE clause with four equality
predicates and a filter predicate, followed by an ORDER BY clause,
referencing the same column as the GROUP BY clause.

3. The outer SELECT statement contains an ORDER BY clause referencing the
same column as the inner ORDER BY clause via the derived table.

As a workaround, the query works if the outermost ORDER BY clause is removed,
as shown in the example above.

This problem has been corrected in Oracle Rdb Release 7.1.4.1.

2.1.3 Database Shutdown Interruped by Re-attach May Cause Lost ALS
Process

Bug 2668892

When the database open mode and the ALS are AUTOMATIC, if a new process
attaches to the database at about the same time as the last process is detaching
and closing the database, then it is possible, in some rare cases, that the ALS will
be stopped by the detaching process and not restarted by the attaching process.

As a workaround, you can start the ALS manually when the database is open and
the ALS is missing with the following command:

$ RMU/SERVER AFTER_JOURNAL START <root-file-spec>

This problem has been corrected in Oracle Rdb Release 7.1.4.1.

2.1.4 Query With BETWEEN Clause Slows Down Using Index Full Scan
Bug 3835253

A customer found that the following query runs much slower as compared to the
previous version of Rdb.

Software Errors Fixed in Oracle Rdb Release 7.1.4.1 2–3

SELECT COUNT(*)
FROM T1 V, T2 L, T3 P, T4 A
WHERE

V.LID = L.LID AND
L.PID = P.PID AND
P.AID = A.AID AND
PSTAT = ’FF’ AND
PNUM = ’123456’ AND
V.TX_DATE BETWEEN DATE ANSI ’2003-01-01’ AND DATE ANSI ’2003-01-05’ AND
A.FLAG = ’T’;

Tables:
0 = T1
1 = T2
2 = T3
3 = T4

Aggregate: 0:COUNT (*)
Conjunct: 0.LID = 1.LID
Match

Outer loop
Sort: 1.LID(a)
Cross block of 3 entries
Cross block entry 1
Leaf#01 BgrOnly 3:T4 Card=21
Bool: 3.FLAG = ’T’
BgrNdx1 T4_NDX [0:0] Fan=21

Cross block entry 2
Conjunct: 2.AID = 3.AID
Get Retrieval sequentially of relation 2:T3

Cross block entry 3
Conjunct: 1.PID = 2.PID
Index only retrieval of relation 1:T2
Index name T2_nDX [0:0]

Inner loop (zig-zag)
Conjunct: 0.PSTAT = ’FF’
Conjunct: 0.PNUM = ’123456’
Conjunct: 0.TX_DATE >= DATE ’2003-01-01’
Conjunct: 0.TX_DATE <= DATE ’2003-01-05’
Get Retrieval by index of relation 0:T1
Index name I_VIOL_TX_SD2 [0:0]
Bool: (0.TX_DATE >= DATE ’2003-01-01’) AND (0.TX_DATE <= DATE

’2003-01-05’)

0
1 row selected

This problem started showing up in Oracle Rdb Release 7.1.2.1 where the fix
for Bug 3144382 was included. For Rdb 7.0, the problem started in Rdb Release
7.0.7.1.

This type of performance problem could likely occur in a query with a predicate
of either GTR, GEQ, LSS, LEQ, NEQ, CONTAINING or STARTS operator as the
leading segment of the index retrieval.

As a workaround, the query correctly applies [2:2] index retrieval if the SQL flag
’selectivity’ is set.

set flags ’selectivity’;

2–4 Software Errors Fixed in Oracle Rdb Release 7.1.4.1

! run the same query from above
!
Tables:
0 = T1
1 = T2
2 = T3
3 = T4

Aggregate: 0:COUNT (*)
Cross block of 4 entries
Cross block entry 1
Leaf#01 BgrOnly 3:T4 Card=21
Bool: 3.FLAG = ’T’
BgrNdx1 T4_NDX [0:0] Fan=21

Cross block entry 2
Conjunct: 2.AID = 3.AID
Get Retrieval sequentially of relation 2:T3

Cross block entry 3
Conjunct: 1.PID = 2.PID
Index only retrieval of relation 1:T2
Index name T2_nDX [0:0]

Cross block entry 4
Leaf#02 BgrOnly 0:T1 Card=19098133
Bool: (0.LID = 1.LID) AND (0.PSTAT = ’FF’) AND (

0.PNUM = ’123456’) AND (0.TX_DATE >= DATE ’2003-01-01’) AND
(0.TX_DATE <= DATE ’2003-01-05’)

BgrNdx1 I_VIOL_TX_SD2 [2:2] Fan=10
Keys: (0.LID = 1.LID) AND (0.TX_DATE >= DATE ’2003-01-01’) AND (

0.TX_DATE <= DATE ’2003-01-05’)

0
1 row selected

This problem has been corrected in Oracle Rdb Release 7.1.4.1.

2.1.5 Database Recovery Process May Fail When AIJs are Full
Bug 4122574

When AIJs were full, it was possible for the database recovery process to fail
when trying to recover processes with active read write transactions. The failure
occurred when trying to undo the current uncommitted transaction. The DBR log
file would show the following:

<timestamp> - Starting transaction UNDO for TSN 0:128
<timestamp> - UNDO TSN 0:128 starts at RUJ JFA (2:0)
<timestamp> - Scanning AIJ for optimistic commit
<timestamp> - Starting AIJ scan at 1:513
%RDMS-I-BUGCHKDMP, generating bugcheck dump file SYS$SYSROOT:[SYSEXE]
RDMDBRBUG.DMP

Note that the AIJ scan started at 1:513 while the AIJ file is only 512 blocks.

The exception in the dump is:
***** Exception at 001B3418 : UTIO$READ_BLOCK + 00000208
%RDMS-F-FILACCERR, error reading disk file
-SYSTEM-W-ENDOFFILE, end of file

This problem has been corrected in Oracle Rdb Release 7.1.4.1.

Software Errors Fixed in Oracle Rdb Release 7.1.4.1 2–5

2.1.6 Count Distinct(fld) May Fail When Sorted Ranked Indexes are Used
Bug 4160534

In Oracle Rdb Release 7.1.0, an optimization enhancement was added to Rdb
to handle "count distinct" type queries if a ranked index could be used to scan
the distinct values. This optimization may return incorrect results if the field
that the distinct value is based on is a leading segment in a multisegment sorted
ranked index.

Count scan can only be used to determine distinct counts if the value expression
of count distinct is covered by the entire key of the index, not just the leading
segments.

A workaround is to disable COUNT SCAN optimization using the SET Flag
statement:

SET FLAGS ’NOCOUNT_SCAN’

This problem has been corrected in Oracle Rdb Release 7.1.4.1.

2.1.7 Left Outer Join View Query With Constant Columns Returns Wrong
Result

Bugs 1752645 and 4155086

A customer gets the wrong result with the following query which selects from a
left outer join view with constant columns.

create view test_vw1 as
select
cast(cast(’ABCD’ as char(4)) as char(4)) as fld_1,
cast(’ABCD’ as char(5)) as fld_2,
cast(case when 1=1 then ’YYY’ else ’NNN’ end as char(3)) as fld_3,
cast(’NNN’ as char(3)) as fld_4

from rdb$database t1
left outer join rdb$database t2 on t2.rdb$file_name = ’asdfasdf’

;
sel * from test_vw1;
Tables:
0 = RDB$DATABASE
1 = RDB$DATABASE

Cross block of 2 entries (Left Outer Join)
Cross block entry 1
Retrieval sequentially of relation 0:RDB$DATABASE

Cross block entry 2
Conjunct: 1.RDB$FILE_NAME = ’asdfasdf’
Get Retrieval sequentially of relation 1:RDB$DATABASE

FLD_1 FLD_2 FLD_3 FLD_4
NULL NULL YYY NULL
1 row selected

The result should display the constant columns instead of NULL. Without the
view, the query returns the correct result.

2–6 Software Errors Fixed in Oracle Rdb Release 7.1.4.1

select
cast(cast(’ABCD’ as char(4)) as char(4)) as fld_1,
cast(’ABCD’ as char(5)) as fld_2,
cast(case when 1=1 then ’YYY’ else ’NNN’ end as char(3)) as fld_3,
cast(’NNN’ as char(3)) as fld_4

from rdb$database t1
left outer join rdb$database t2 on t2.rdb$file_name = ’asdfasdf’

;
Tables:
0 = RDB$DATABASE
1 = RDB$DATABASE

Cross block of 2 entries (Left Outer Join)
Cross block entry 1
Retrieval sequentially of relation 0:RDB$DATABASE

Cross block entry 2
Conjunct: 1.RDB$FILE_NAME = ’asdfasdf’
Get Retrieval sequentially of relation 1:RDB$DATABASE

FLD_1 FLD_2 FLD_3 FLD_4
ABCD ABCD YYY NNN
1 row selected

The original design for Bug 1752645, which allows a constant column in a view
definition for an outer join, caused all types of problems in the optimizer because
it could not associate the constant column to the view. With this fix, the wrong
result is produced by the simple query (like the one above) which selects constant
columns of nested expressions from a view query with left outer join on two
tables.

The fix for Bug 1752645 has been withdrawn from all Rdb releases to fix this
current problem.

There is no known workaround for this problem.

This problem has been corrected in Oracle Rdb Release 7.1.4.1.

2.1.8 Bugchecks at DIOMARK$NEW_SNAP_PAGE + 000000D0 When Area
Added Online

Bug 3818408

If a database was currently open on multiple nodes, and a storage area was
added on one node, attempts to reference that area on other nodes could result in
a bugcheck containing an exception similar to the following:

***** Exception at 011F4500 : DIOMARK$NEW_SNAP_PAGE + 000000D0
%SYSTEM-F-ACCVIO, access violation, reason mask=00, virtual address=
0000000000000008, PC=00000000011F4500, PS=0000000B

This problem can be demonstrated with the following commands.

Session on Node 1:

$ SQL$
SQL> CREATE DATABASE FILENAME TEST OPEN IS MANUAL
SQL> RESERVE 10 STORAGE AREAS
SQL>
SQL> CREATE STORAGE AREA RDB$SYSTEM FILENAME TEST;
SQL> EXIT

Session on Node 2:

$ RMU/OPEN/WAIT TEST

Software Errors Fixed in Oracle Rdb Release 7.1.4.1 2–7

Session on Node 1:

$ RMU/OPEN/WAIT TEST
$
$ SQL$
SQL> ALTER DATABASE FILENAME TEST
SQL> ADD STORAGE AREA AREA1 FILENAME AREA1;
SQL>
SQL> ATTACH ’FILENAME TEST’;
SQL> CREATE TABLE T1 (F1 INTEGER);
SQL> CREATE STORAGE MAP M1 FOR T1 STORE IN AREA1;
SQL> COMMIT;
SQL> EXIT

Session on Node 2:

SQL> ATTACH ’FILENAME TEST’;
SQL> INSERT INTO T1 VALUES (1);
%RDMS-I-BUGCHKDMP, generating bugcheck dump file dev:[dir]RDSBUGCHK.DMP;
%RDMS-I-BUGCHKDMP, generating bugcheck dump file dev:[dir]SQLBUGCHK.DMP;
%SYSTEM-F-ACCVIO, access violation, reason mask=00, virtual address=
0000000000000008, PC=000000000027F20C, PS=0000001B
SQL> ROLLBACK;
SQL> EXIT;

The bugcheck would only occur if a specific sequence of actions occurred the first
time the new storage area was accessed on a node that did not create the area.
Under certain conditions, the data structure describing the new storage area was
not being read from disk prior to being accessed.

The problem can be avoided by closing the database on all nodes prior to adding
a new storage area.

This problem has been corrected in Oracle Rdb Release 7.1.4.1.

2.1.9 Query with GROUP BY and ORDER BY Returned Rows in the Wrong
Order

Bug 4239808

The following query with GROUP BY and ORDER BY clauses returned rows in
the wrong order. The detailed query strategy appears after the select statement
and before the resulting data rows. If you compare the order of the keys in the
ORDER BY clause of the SELECT statement with the order of those same keys
in the Sort: line of the detailed query strategy, you will see that they are not the
same. This pinpoints the cause of the error.

2–8 Software Errors Fixed in Oracle Rdb Release 7.1.4.1

set flags ’detail,strategy’;
select

T2.ITYPE,
T3.UNLY,
SUM(T1.AMT) as AMOUNT

from
(select CLRH, SCTRY, SMRKT,

SIG, SCMD,
ETYPE, CNO, DSNAME, AMT

from EDS
where BID = 1 and

ETYPE = 1 and
CNO IN (24,25)) as T1

join
EINTR as T2 on
T2.SCTRY = T1.SCTRY AND
T2.SMRKT = T1.SMRKT AND
T2.SIG = T1.SIG

join
ENT_UND as T3 on
T3.SCMD = T1.SCMD

group by
T1.CLRH,
T2.ITYPE,
T3.UNLY,
T1.ETYPE,
T1.CNO,
T1.DSNAME

order by
T1.CLRH,
T1.DSNAME,
T1.ETYPE,
T1.CNO,
T2.ITYPE,
T3.UNLY;

T2.ITYPE T3.UNLY AMOUNT
HSIC HSI 6.660000000000000E+002
HSIP HSI 7.140000000000000E+002
SFU2 JSE 5.684000000000002E+002
MHIC MHI 2.000000000000000E+002
MHIF MHI 1.840000000000000E+001
MHIP MHI 4.000000000000000E+001

... etc. ...

12 rows selected

The results appear in the correct order when the query is run under Rdb Release
7.0.6.2. The value SFU2 in column T2.ITYPE would correctly appear in row 6 (as
shown in the example that follows). In the example above, that value is sorted
incorrectly and appears in row 3.

As a workaround, the query works if the columns of the GROUP BY clause are
rearranged to be in the same order as in the ORDER BY clause.

Software Errors Fixed in Oracle Rdb Release 7.1.4.1 2–9

select
T2.ITYPE,
T3.UNLY,
SUM(T1.AMT) as AMOUNT

from
(select CLRH, SCTRY, SMRKT,

SIG, SCMD,
ETYPE, CNO, DSNAME, AMT

from EDS
where BID = 1 and

ETYPE = 1 and
CNO IN (24,25)) as T1

join
EINTR as INST on
T2.SCTRY = T1.SCTRY AND
T2.SMRKT = T1.SMRKT AND
T2.SIG = T1.SIG

join
ENT_UND as UND on
T3.SCMD = T1.SCMD

group by
T1.CLRH,
T1.DSNAME,
T1.ETYPE,
T1.CNO,
T2.ITYPE,
T3.UNLY

order by
T1.CLRH,
T1.DSNAME,
T1.ETYPE,
T1.CNO,
T2.ITYPE,
T3.UNLY;

T2.ITYPE T3.UNLY AMOUNT
HSIC HSI 6.660000000000000E+002
HSIP HSI 7.140000000000000E+002
MHIC MHI 2.000000000000000E+002
MHIF MHI 1.840000000000001E+001
MHIP MHI 4.000000000000000E+001
SFU2 JSE 5.684000000000001E+002

... etc. ...

12 rows selected

The key parts of this cursor query which contributed to the situation leading to
the error are these:

1. The select query contains GROUP BY and ORDER BY clauses where the
columns of the ORDER BY clause have a different order from that of the
GROUP BY clause.

2. One item of the select list is an aggregate of some sort, for example SUM.

3. The query applies the cross strategy rather than a match strategy.

This problem has been corrected in Oracle Rdb Release 7.1.4.1.

2–10 Software Errors Fixed in Oracle Rdb Release 7.1.4.1

2.1.10 Query with GROUP BY, ORDER BY Returned Rows in the Wrong Order
Bugs 4239808 and 3197004

A query with a GROUP BY and an ORDER BY clause presented its rows
sorted in the wrong order. Below is an example query on the standard Rdb
PERSONNEL database. The example first shows the SQL query, followed by a
detailed diagnostic output of the Rdb optimizer’s query strategy, followed by the
rows returned as the result of the query. Certain lines in the example have been
annotated with numerals towards the right margin so that reference can be made
to those lines in the explanation that follows the example.

set flags ’detail,strategy’;

select employee_id as emp_id,
manager_id as mgr_id,
last_name as last_name

from employees inner join departments
on (employee_id = manager_id) 1
group by employee_id, last_name, manager_id 2
order by employee_id desc, manager_id desc; 3
Tables:
0 = EMPLOYEES
1 = DEPARTMENTS

Reduce: 0.LAST_NAME, 0.EMPLOYEE_ID, 1.MANAGER_ID
Sort: 0.LAST_NAME(a), 0.EMPLOYEE_ID(d), 1.MANAGER_ID(a) 4
Cross block of 2 entries
Cross block entry 1
Get Retrieval sequentially of relation 1:DEPARTMENTS

Cross block entry 2
Get Retrieval by index of relation 0:EMPLOYEES
Index name EMP_EMPLOYEE_ID [1:1] Direct lookup
Keys: 0.EMPLOYEE_ID = 1.MANAGER_ID

EMP_ID MGR_ID LAST_NAME
00374 00374 Andriola
00207 00207 Babbin
00205 00205 Bartlett
00173 00173 Bartlett

...

26 rows selected

The query strategy, in this case, showed but a single Sort: line (the line marked
4). The order of the sort keys was different from the order in the query’s ORDER
BY clause (line 3). The query contains a GROUP BY clause (line 2), which
implies that sorting must be done to perform the grouping operation. As a rule,
the Rdb optimizer tries to rearrange keys in a GROUP BY sort using the order of
the keys in an outer ORDER BY sort. If it can do so, Rdb eliminates one of the
two sorts by combining them. In this example, Rdb did so incorrectly, resulting in
the wrong order of sort keys in the remaining sort operation of the original two.
This explains why the rows were sorted incorrectly.

In the examples, the EMPLOYEE_ID and MANAGER_ID columns are used
in an ON clause (line 1) as the condition for joining two tables, EMPLOYEES
and DEPARTMENTS. The EMPLOYEE_ID and MANAGER_ID columns appear
in the ORDER BY clause (line 3) and those sort keys are considered to be
equivalent. One can sort on the one key or sort on the other to achieve the same
results. In certain cases (the preceding example showing one of them), the fact
that the ORDER BY clause contained two or more equivalent sort keys was one
of the conditions that caused the incorrect behavior in Rdb.

Software Errors Fixed in Oracle Rdb Release 7.1.4.1 2–11

The following example shows the corrected behavior.

set flags ’detail,strategy’;

select employee_id as emp_id,
manager_id as mgr_id,
last_name as last_name

from employees inner join departments
on (employee_id = manager_id) 1
group by employee_id, last_name, manager_id 2
order by employee_id desc, manager_id desc; 3
Tables:
0 = EMPLOYEES
1 = DEPARTMENTS

Sort: 0.EMPLOYEE_ID(d), 1.MANAGER_ID(d) 5
Reduce: 0.EMPLOYEE_ID, 0.LAST_NAME, 1.MANAGER_ID
Sort: 0.EMPLOYEE_ID(a), 0.LAST_NAME(a), 1.MANAGER_ID(a) 4
Cross block of 2 entries
Cross block entry 1
Get Retrieval sequentially of relation 1:DEPARTMENTS

Cross block entry 2
Get Retrieval by index of relation 0:EMPLOYEES
Index name EMP_EMPLOYEE_ID [1:1] Direct lookup
Keys: 0.EMPLOYEE_ID = 1.MANAGER_ID

EMP_ID MGR_ID LAST_NAME
00471 00471 Herbener
00418 00418 Blount
00405 00405 Dement
00374 00374 Andriola

...

26 rows selected

This second example, above, shows the query results returned in the desired
order. The query strategy now has two sorts performed (one at line 4 for the
GROUP BY clause and one at line 5 for the ORDER BY clause).

A third example, below, shows a variation of the previous query. In this next
example, the columns in the GROUP BY and the ORDER BY clauses are the
same, and the order sorts first in descending order on the first key and in
ascending order on the second key. See the line marked 1 in the right margin
for the sort order that Rdb used. Sorting first on MANAGER_ID and then
on EMPLOYEE_ID is accceptable because the two columns are equivalent as
explained earlier in this note. The problem was that the sorting was done in
ascending order.

set flags ’detail,strategy’;

2–12 Software Errors Fixed in Oracle Rdb Release 7.1.4.1

select employee_id as emp_id,
manager_id as mgr_id

from employees inner join departments
on (employee_id = manager_id)
group by employee_id, manager_id
order by employee_id desc, manager_id asc;

Tables:
0 = EMPLOYEES
1 = DEPARTMENTS

Reduce: 1.MANAGER_ID, 0.EMPLOYEE_ID
Sort: 1.MANAGER_ID(a), 0.EMPLOYEE_ID(a) 1
Cross block of 2 entries
Cross block entry 1
Get Retrieval sequentially of relation 1:DEPARTMENTS

Cross block entry 2
Index only retrieval of relation 0:EMPLOYEES
Index name EMP_EMPLOYEE_ID [1:1] Direct lookup
Keys: 0.EMPLOYEE_ID = 1.MANAGER_ID

EMP_ID MGR_ID
00164 00164
00166 00166
00168 00168
00173 00173

...

26 rows selected

The following example shows the corrected behavior. Again, the positions of
MANAGER_ID and EMPLOYEE_ID are swapped in the sort order, which is
permissible given that the two columns are equivalent in this query. The first key
is sorted in descending order and the second key is sorted in ascending order, as
they should be.

set flags ’detail,strategy’;

select employee_id as emp_id,
manager_id as mgr_id

from employees inner join departments
on (employee_id = manager_id)
group by employee_id, manager_id
order by employee_id desc, manager_id asc;

Tables:
0 = EMPLOYEES
1 = DEPARTMENTS

Reduce: 1.MANAGER_ID, 0.EMPLOYEE_ID
Sort: 1.MANAGER_ID(d), 0.EMPLOYEE_ID(a) 1
Cross block of 2 entries
Cross block entry 1
Get Retrieval sequentially of relation 1:DEPARTMENTS

Cross block entry 2
Index only retrieval of relation 0:EMPLOYEES
Index name EMP_EMPLOYEE_ID [1:1] Direct lookup
Keys: 0.EMPLOYEE_ID = 1.MANAGER_ID

EMP_ID MGR_ID
00471 00471
00418 00418
00405 00405
00374 00374

...

26 rows selected

There is no known workaround for this problem.

This problem has been corrected in Oracle Rdb Release 7.1.4.1.

Software Errors Fixed in Oracle Rdb Release 7.1.4.1 2–13

2.1.11 Truncating Empty Table Leaves Uncommited Transaction in Journal
Bug 4245771

If an empty table was truncated, an after-image journal (AIJ) entry would
be made for the truncate operation but no commit entry would be entered in
the journal for the committed transaction. Thus the transaction would appear
uncommitted when a recover operation was done with the journal.

For example, the following message could be displayed by a RMU/RECOVER
command when recovering a journal that has missing COMMIT entries:

%RMU-I-LOGRECSTAT, transaction with TSN nn:nn is active

This message can be safely ignored. To prevent this from occurring, some other
kind of update operation would need to be done in the same transaction as the
TRUNCATE command. For example, if a row was added to the table prior to the
TRUNCATE command then that would prevent this problem from occurring.

This problem has been corrected in Oracle Rdb Release 7.1.4.1.

2.1.12 Bugchecks in AIJUTL$FREE_DIRTY_ARBS When Journals Full
Bug 4088221

Various processes could fail with bugchecks in AIJUTL$FREE_DIRTY_ARBS if
all journals became full, a user process was terminated, a journal was backed up,
and further journaling activity in the database occurred.

The bugcheck exception was similar to the following:

***** Exception at 011E9E94 : AIJUTL$FREE_DIRTY_ARBS + 000005F4
%COSI-F-BUGCHECK, internal consistency failure

This problem was introduced in Oracle Rdb Release 7.1.2.4.

The following demonstrates how this problem could occur.

Create a simple database with two minimum sized journals:

$ SQL$
CREATE DATABASE FILENAME TEST
CREATE STORAGE AREA AREA1
FILENAME AREA1 ;

CREATE TABLE TABLE1 (COLUMN1 INTEGER, COLUMN2 CHAR (900));
CREATE STORAGE MAP MAP1 FOR TABLE1
DISABLE COMPRESSION
STORE IN AREA1;

COMMIT;
DISCONNECT ALL;

ALTER DATABASE FILE TEST
JOURNAL IS ENABLED
(FAST COMMIT IS ENABLED,
SHUTDOWN TIME IS 1 MINUTE)
RESERVE 1 JOURNAL
ADD JOURNAL JOURNAL1 FILENAME ’JOURNAL1’
ADD JOURNAL JOURNAL2 FILENAME ’JOURNAL2’;

EXIT;

2–14 Software Errors Fixed in Oracle Rdb Release 7.1.4.1

Fill the journals:

$ RMU/OPEN TEST
$ SQL$
ATTACH ’FILENAME TEST’;

INSERT INTO TABLE1 VALUES (1, ’Text’);
COMMIT;
EXIT;
$ RMU/SET AFTER_JOURNAL /SWITCH TEST
$ SQL$
ATTACH ’FILENAME TEST$DATABASE:TEST’;
BEGIN
DECLARE :I INT;
FOR :I IN 2 TO 100000
DO

INSERT INTO TABLE1 VALUES (:I, ’Text’);
END FOR;
COMMIT;
END;

After the journals fill, the insert process will hang. Kill it, backup the journals,
and then attempt to insert more data into the table:

$ RMU/BACKUP/AFTER/NOLOG TEST NL:
$ SQL$
ATTACH ’FILENAME TEST’;

INSERT INTO TABLE1 VALUES (1, ’Text’);
%RDMS-I-BUGCHKDMP, generating bugcheck dump file dev:[dir]RDSBUGCHK.DMP;
%COSI-F-BUGCHECK, internal consistency failure

This problem can be avoided by ensuring that journals are backed up prior to all
journals becoming full.

This problem has been corrected in Oracle Rdb Release 7.1.4.1.

2.1.13 Query With Shared Expressions in OR Predicates Returns Wrong
Result

Bugs 4300529 and 3918278

The following query with shared expressions in the OR predicate returns the
wrong result.

Software Errors Fixed in Oracle Rdb Release 7.1.4.1 2–15

select * from
(SELECT T1.SEM, T1.PAL, T1.VUO, T1.KK, T1.PV

FROM T1, T2
WHERE (T2.SEM = T1.SEM)

AND
((NOT EXISTS (SELECT T3.SEM FROM T3

WHERE T3.SEM = T1.SEM))
OR
(T1.SEM = ’JOVK’))
AND
((NOT EXISTS (SELECT T3.SEM FROM T3

WHERE T3.PAL = T1.PAL))
OR
(T1.SEM = ’JOVK’))

) as DTAB (SEM, PAL, VUO, KK, PV)
where VUO = ’2005’ and KK = ’03’ and PV = ’29’;
Tables:
0 = T1
1 = T2
2 = T3
3 = T3

Merge of 1 entries
Merge block entry 1
Cross block of 4 entries
Cross block entry 1
Conjunct: (0.VUO = ’2005’) AND (0.KK = ’03’) AND (0.PV = ’29’)
Index only retrieval of relation 0:T1
Index name T1_INDEX [3:3]
Keys: (0.VUO = ’2005’) AND (0.KK = ’03’) AND (0.Pv = ’29’)

Cross block entry 2
Conjunct: (<agg0> = 0) OR (0.SEM = ’JOVK’)
Conjunct: (<agg0> = 0) OR (0.SEM = ’JOVK’)
Aggregate-F1: 0:COUNT-ANY (<subselect>)
Conjunct: (2.SEM = 0.SEM)
Index only retrieval of relation 2:T3
Index name T3_INDEX [0:0]

Cross block entry 3
Conjunct: (<agg0> = 0) OR (0.SEM = ’JOVK’)
Conjunct: 0.SEM = ’JOVK’ <== See NOTE
Conjunct: ((<agg0> = 0) OR (0.SEM = ’JOVK’)) AND

((<agg1> = 0) OR (0.SEM = ’JOVK’))
Aggregate-F1: 1:COUNT-ANY (<subselect>)
Conjunct: (<agg0> = 0) OR (0.SEM = ’JOVK’)
Conjunct: (<agg0> = 0) OR (0.SEM = ’JOVK’)
Conjunct: (3.PAL = 0.PAL)
Index only retrieval of relation 3:T3
Index name T3_INDEX [0:0]

Cross block entry 4
Conjunct: ((<agg0> = 0) OR (0.SEM = ’JOVK’)) AND

((<agg1> = 0) OR (0.SEM = ’JOVK’))
Index only retrieval of relation 1:T2
Index name T2_INDEX [1:1] Direct lookup
Keys: 1.SEM = 0.SEM

SEM PAL VUO KK PV
JOVK TV2 2005 03 29
JOVK TV2 2005 03 29
2 rows selected

NOTE:: The conjunct "(0.SEM = ’JOVK’)" is separated from its parent OR
predicate with the other left operand "(<agg0> = 0)".

2–16 Software Errors Fixed in Oracle Rdb Release 7.1.4.1

The following cross entry 3 contains the incorrect conjunct "(0.SEM = ’JOVK’)"
which is separated from the other left operand "(<agg0> = 0)" of the OR predicate.

Cross block entry 3
Conjunct: (<agg0> = 0) OR (0.SEM = ’JOVK’)
Conjunct: 0.SEM = ’JOVK’ <== Incorrect
Conjunct: ((<agg0> = 0) OR (0.SEM = ’JOVK’)) AND
((<agg1> = 0) OR (0.SEM = ’JOVK’))
Aggregate-F1: 1:COUNT-ANY (<subselect>)
Conjunct: (<agg0> = 0) OR (0.SEM = ’JOVK’)
Conjunct: (<agg0> = 0) OR (0.SEM = ’JOVK’)
Conjunct: (3.PAL = 0.PAL)
Index only retrieval of relation 3:T3
Index name T3_INDEX [0:0]

There is no known workaround for this problem.

The key parts of this query which contributed to the situation leading to the error
are these:

1. The main query selects from a derived table joining two tables with the
filtering predicates in the outer WHERE clause.

2. The inner WHERE clause of the query selecting the derived table contains
a join equality predicate and two similar OR predicates with a shared
expression "(T1.SEM = ’JOVK’)" as the right side operand.

This problem has been corrected in Oracle Rdb Release 7.1.4.1.

2.1.14 Failed Users Not Recovered if DBR Startup Fails
Failed users would not always be recovered if a database shutdown was forced
due to an error when the database monitor attempted to create a database
recovery (DBR) process.

For example, if there were insufficient process slots available on the system to
create another process and the database monitor could not create a DBR then
the database would be shutdown. The forced shutdown would leave behind user
entries in the database for all the processes that were accessing the database
from that node. However, the monitor would incorrectly clear the entry in the
data structure used to determine if a node recovery was needed. This would
prevent the failed users from being recovered the next time that the database
was accessed.

Since the failed users were not recovered, it is possible that database corruption
could be introduced since changes made by the failed users were not rolled back
before other users accessed the data. It is possible that logical inconsistencies
could have been introduced in the database that cannot be detected by
RMU/VERIFY. If this problem is encountered, it is advised that the database
be restored from the last backup and after-image journals be applied to recover
the database up to the point of failure. Recovery past the point of failure may be
possible but could re-introduce corruption.

This problem can be avoided by ensuring that there are sufficient system
resources available to start DBR processes when needed.

This problem has been corrected in Oracle Rdb Release 7.1.4.1.

Software Errors Fixed in Oracle Rdb Release 7.1.4.1 2–17

2.1.15 Various Errors or Corruption of Ranked Indexes
Bug 4216643

If a series of updates occurred on an index node of type is sorted ranked in the
same transaction, it was possible that the index node could be corrupted.

Several different results could occur depending on subsequent operations in the
transaction.

• If there were no further operations on the index node in the same transaction
and the transaction committed, the index will be left corrupt.

• If a subsequent update attempted certain operations on the index node,
various bugchecks could result. In this case, the transaction would be rolled
back and the index node would not be corrupt.

• If a subsequent update attempted to update the same index node, the update
could fail with the error message "RDB-E-NO_RECORD, access by dbkey
failed because dbkey is no longer associated with a record". In this case,
the index may or may not be left corrupt depending on the precise sequence
of operations and also on the application’s response to the error. If the
application commits the transaction, the index may be left corrupt. If the
application rolls back the transaction, the index will not be left corrupt.

In the reported case, a RDB-E-NO_RECORD error was reported and the failed
update was automatically rolled back. This is termed a verb rollback. The
following example shows the reported error.

SQL> delete from some_table where some_key < 20050225;
%RDB-E-NO_RECORD, access by dbkey failed because dbkey is no longer
associated with a record
-RDMS-F-NODBK, 98:770:1 does not point to a data record

In this case, a subsequent RMU/VERIFY reported no errors and the index was
not corrupt.

To produce this problem, a precise sequence of operations needed to occur within
the same transaction.

• A row is deleted where the key value is not the first key value in the index
node and that key value has many duplicates causing the duplicates chain to
overflow into several overflow index nodes.

• The dbkey for the deleted row must be in the first overflow node for the key
value.

• A row is deleted that is the last remaining row with a key value in the
same index node and that key value appeared in the index node before the
previously deleted row.

• Another row is deleted with the first key value and the deleted dbkey is the
last remaining dbkey in the first overflow node.

When the last dbkey is deleted from the first overflow node, that node is deleted
and the overflow pointer in the index node must be modified to point to the
second overflow node. In the sequence above, the deletion of the unique key
values caused the location of the second ikey to be moved in the index node but
the third delete used a stale pointer to update the overflow dbkey.

The problem can be avoided by performing the sequence of operations in a
different order or in separate transactions. The problem only affects indexes of
type is sorted ranked.

2–18 Software Errors Fixed in Oracle Rdb Release 7.1.4.1

If index corruption occurs, the index must be dropped and recreated to eliminate
the corruption.

This problem has been corrected in Oracle Rdb Release 7.1.4.1.

2.1.16 Wrong Results Generated by Query With Common Boolean Elements
Bug 4332115

In prior releases of Oracle Rdb, an optimization was applied to WHERE clauses
and other Boolean expressions to reformat those queries to gain possible
advantages in the query execution phase. However, in the reported problem,
this optimization leads to a query strategy that does not return the correct
results. In some cases, the common expression in an OR expression was lifted too
high in the expression and so distorted the results.

While this problem is possible in older versions of Rdb, it may occur more
frequently in Oracle Rdb V7.0 and later versions because of a more aggressive
restructuring algorithm employed by these recent versions.

For example, this query against the EMPLOYEES table should produce four
result rows.

SQL> set flags ’strategy,detail’;
SQL>
SQL> select last_name, first_name
cont> from employees
cont> where
cont> (
cont> (
cont> (last_name = ’Watters’ and first_name = ’Christine’)
cont> or
cont> (last_name = ’Watters’ and first_name = ’Cora’)
cont>)
cont> and
cont> (
cont> (last_name = ’Watters’ and first_name = ’Christine’)
cont> or
cont> (last_name = ’Watters’ and first_name = ’Cora’)
cont>)
cont>)
cont> or
cont> (last_name = ’Smith’)
cont> order by 1, 2
cont> ;
Tables:
0 = EMPLOYEES

Sort: 0.LAST_NAME(a), 0.FIRST_NAME(a)
Leaf#01 BgrOnly 0:EMPLOYEES Card=100
Bool: ((((0.FIRST_NAME = ’Christine’) OR (0.FIRST_NAME = ’Cora’)) AND ((

0.FIRST_NAME = ’Christine’) OR (0.FIRST_NAME = ’Cora’))) OR (0.LAST_NAME
= ’Smith’)) AND (0.LAST_NAME = ’Watters’)

BgrNdx1 EMP_LAST_NAME [1:1] Fan=12
Keys: 0.LAST_NAME = ’Watters’

LAST_NAME FIRST_NAME
Watters Christine
Watters Cora
2 rows selected
SQL> -- expecting 4 rows

The detailed strategy output shows that the expression AND (0.LAST_NAME
= ’Watters’) has been raised to the outer most part of the query and thus
erroneously eliminates two of the rows matching ’Smith’.

Software Errors Fixed in Oracle Rdb Release 7.1.4.1 2–19

This problem has been corrected in Oracle Rdb Release 7.1.4.1. The query
optimizer now correctly handles the case where a trailing OR term does not
match a common Boolean with the query.

2.1.17 Wrong Result From Query With Common Join Booleans in OR
Bugs 4332115 and 1329838

The following query with common join booleans in the OR predicate returns
the wrong result (should be 5 rows) after the common boolean optimization is
manually disabled (by commenting out the code).

sel e.employee_id, e.last_name, j.job_start
from employees e, job_history j
where

e.employee_id = j.employee_id and e.employee_id = ’00222’
or

e.employee_id = j.employee_id and e.employee_id = ’00234’
or

e.employee_id = j.employee_id and e.employee_id = ’00345’
;
Tables:
0 = EMPLOYEES
1 = JOB_HISTORY

Cross block of 2 entries
Cross block entry 1
Get Retrieval by index of relation 0:EMPLOYEES
Index name EMP_EMPLOYEE_ID [0:0]

Cross block entry 2
Conjunct:
((0.EMPLOYEE_ID = 1.EMPLOYEE_ID) AND (0.EMPLOYEE_ID = ’00222’))

OR
((0.EMPLOYEE_ID = 1.EMPLOYEE_ID) AND (0.EMPLOYEE_ID = ’00234’))

OR
((0.EMPLOYEE_ID = 1.EMPLOYEE_ID) AND (0.EMPLOYEE_ID = ’00345’))
OR index retrieval
Conjunct:
((0.EMPLOYEE_ID = 1.EMPLOYEE_ID) AND (0.EMPLOYEE_ID = ’00222’))

OR
((0.EMPLOYEE_ID = 1.EMPLOYEE_ID) AND (0.EMPLOYEE_ID = ’00234’))
OR index retrieval
Conjunct:
(0.EMPLOYEE_ID = 1.EMPLOYEE_ID) AND (0.EMPLOYEE_ID = ’00222’)
Get Retrieval by index of relation 1:JOB_HISTORY
Index name JOB_HISTORY_HASH [1:1]
Keys: 0.EMPLOYEE_ID = 1.EMPLOYEE_ID

Conjunct:
NOT ((0.EMPLOYEE_ID = 1.EMPLOYEE_ID) AND (0.EMPLOYEE_ID = ’00222’))

AND
(0.EMPLOYEE_ID = 1.EMPLOYEE_ID) AND (0.EMPLOYEE_ID = ’00234’)
Get Retrieval by index of relation 1:JOB_HISTORY
Index name JOB_HISTORY_HASH [1:1]
Keys: 0.EMPLOYEE_ID = 1.EMPLOYEE_ID

Conjunct:
NOT (((0.EMPLOYEE_ID = 1.EMPLOYEE_ID) AND (0.EMPLOYEE_ID = ’00222’))

OR
(0.EMPLOYEE_ID = 1.EMPLOYEE_ID)) ! Note :: <== missing ’00234’

AND (0.EMPLOYEE_ID = 1.EMPLOYEE_ID) AND (0.EMPLOYEE_ID = ’00345’)
Get Retrieval by index of relation 1:JOB_HISTORY
Index name JOB_HISTORY_HASH [1:1]
Keys: 0.EMPLOYEE_ID = 1.EMPLOYEE_ID

E.EMPLOYEE_ID E.LAST_NAME J.JOB_START
00222 Lasch 28-Dec-1979
00222 Lasch 18-Aug-1976
00234 Robinson 20-May-1980

2–20 Software Errors Fixed in Oracle Rdb Release 7.1.4.1

00234 Robinson 5-Mar-1978
4 rows selected

Note that the boolean ’0.EMPLOYEE_ID = ’00234’ is missing in the NOT
predicate of the 2nd leg of the outer OR index retrieval.

There is no known workaround for this problem.

The key parts of this query which contributed to the situation leading to the error
are these:

1. The main query joins EMPLOYEES and JOB_HISTORY tables using
EMPLOYEE_ID.

2. The WHERE clause of the query contains two OR predicates with three
operands where E.EMPLOYEE_ID = J.EMPLOYEE_ID is a common join
boolean in each operand.

This problem has been corrected in Oracle Rdb Release 7.1.4.1.

2.1.18 Wrong Result Selecting From a Derived Table of UNION Clause
Bug 4327112

The following query selects the wrong result (should be 3 rows) from a derived
table of a union clause.

set flags ’strategy,detail’;
SEL * FROM

(SELECT FLD1, A.FLD2,
NVL((SELECT FLD3 FROM TAB_B B WHERE B.FLD2 = A.FLD2), ’Z’)

FROM TAB_A A
UNION
SELECT F1, F2, F3 FROM TAB_C
) AS DT (F1, F2, F3)

WHERE DT.F3 = ’Z’;
Tables:
0 = TAB_A
1 = TAB_B
2 = TAB_C

Merge of 1 entries
Merge block entry 1
Reduce: <mapped field>, <mapped field>, <mapped field>
Sort: <mapped field>(a), <mapped field>(a), <mapped field>(a)
Merge of 2 entries
Merge block entry 1
Cross block of 2 entries
Cross block entry 1
Get Retrieval sequentially of relation 0:TAB_A

Cross block entry 2
Aggregate: 0:VIA (1.FLD3)
Conjunct: 1.FLD2 = 0.FLD2
Get Retrieval sequentially of relation 1:TAB_B

Merge block entry 2
Conjunct: 2.F3 = ’Z’
Get Retrieval sequentially of relation 2:TAB_C

F1 F2 F3
1 A Z
2 A Z
3 B 1 <== should not have returned this row
4 C Z
4 rows selected

In the problem query, the conjunct "DT.F3 = ’Z’" appears only in the second
UNION leg but not in the first UNION leg. Without an additional conjunct at the
outside of the union query, the query returns the wrong result.

Software Errors Fixed in Oracle Rdb Release 7.1.4.1 2–21

As a workaround, the query works if the union legs are swapped.

SEL * FROM
(
SELECT F1, F2, F3 FROM TAB_C ! <== second leg is swapped here as first leg
UNION
SELECT

FLD1, A.FLD2,
NVL((SELECT FLD3 FROM TAB_B B WHERE B.FLD2 = A.FLD2), ’Z’)
FROM TAB_A A
) AS DT (F1, F2, F3)

WHERE DT.F3 = ’Z’;
Tables:
0 = TAB_C
1 = TAB_A
2 = TAB_B
3 = TAB_B

Conjunct: <mapped field> = ’Z’ <== See note
Merge of 1 entries
Merge block entry 1
Reduce: <mapped field>, <mapped field>, <mapped field>
Sort: <mapped field>(a), <mapped field>(a), <mapped field>(a)
Merge of 2 entries
Merge block entry 1
Conjunct: 0.F3 = ’Z’
Get Retrieval sequentially of relation 0:TAB_C
Merge block entry 2
Cross block of 3 entries
Cross block entry 1
Get Retrieval sequentially of relation 1:TAB_A

Cross block entry 2
Aggregate: 0:VIA (2.FLD3)
Conjunct: 2.FLD2 = 1.FLD2
Get Retrieval sequentially of relation 2:TAB_B

Cross block entry 3
Aggregate: 1:VIA (3.FLD3)
Conjunct: 3.FLD2 = 1.FLD2
Get Retrieval sequentially of relation 3:TAB_B

F1 F2 F3
1 A Z
2 A Z
4 C Z
3 rows selected

Note:: There is an additional conjunct "<mapped field> = ’Z’" at the top of the
union query.

The key parts of this query which contributed to the situation leading to the error
are these:

1. The main query selects from the derived table of a union clause with a filter
predicate.

2. The first leg of the union clause contains a select query with a NVL function
on a subselect query.

3. The second leg of the union clause contains a select query from a table.

This problem has been corrected in Oracle Rdb Release 7.1.4.1.

2–22 Software Errors Fixed in Oracle Rdb Release 7.1.4.1

2.1.19 Incorrect Foreign Key Constraint Behavior on Update
Bug 4157145

A certain class of foreign key constraint would fail to detect a violation when an
update was performed. Under the following conditions, an update statement that
modified a primary/unique key would not result in a constraint violation if one
were to exist:

• The constraint must have been defined by the SQL REFERENCES clause
(making it a foreign key constraint).

• The constraint must be self-referencing. A self-referencing constraint is one in
which the columns of the foreign key and the columns of the primary/unique
key are in the same table.

• The update statement must have referenced one or more of the columns that
make up the primary/unique key.

The following is an example of a self-referencing, foreign key constraint.

SQL$

create database filename test;

create table t (pk char (3), fk char (3),
constraint pk_constraint
primary key (pk) not deferrable);

insert into t(pk) values (’1’);
1 row inserted
insert into t(pk,fk) values (’2’,’2’);
1 row inserted
insert into t(pk,fk) values (’3’,’1’);
1 row inserted
commit;

alter table t
add constraint
constraint fk_constraint
foreign key (fk) references t(pk) not deferrable;

commit;

select * from t order by pk;
PK FK
1 NULL
2 2
3 1
3 rows selected
rollback;

update t set pk=’9’ where pk=’1’;
%RDB-E-INTEG_FAIL, violation of constraint FK_CONSTRAINT caused
operation to fail
-RDB-F-ON_DB, on database DISK:[DIR]TEST.RDB;

The third row, with values (3,1), shows a foreign key value that matches a
primary key value in the first row. The update statement, which attempts to
change the primary key value in that first row from 1 to 9 violates the foreign
key constraint that a primary key with value 1 exist in the table.

The example shows the error message that is now reported by Oracle Rdb Release
7.1.4.1. In some prior releases, the constraint violation was not detected, no error
message was reported, and the update was allowed.

Software Errors Fixed in Oracle Rdb Release 7.1.4.1 2–23

For self-referencing, foreign key constraint definitions created using SQL and
the REFERENCES clause and created using Oracle Rdb 7.1.4.1, the correct
behavior will appear. For such constraints created by certain earlier releases
of Oracle Rdb, the problem will continue to appear. To determine if a table
contains erroneous data, data that should cause a constraint violation, execute
the statement RMU/VERIFY/CONSTRAINT. If there is an error in the data, you
should see an error message such as the one in the following example. In the
example, the database file specification has been abbreviated to the word DBASE
to shorten the text.

$ rmu/verify/constraint test.rdb
%RMU-I-BGNROOVER, beginning root verification
%RMU-I-ENDROOVER, completed root verification
%RMU-I-BGNVCONST, beginning verification of constraints for database DBASE
%RMU-W-CONSTFAIL, Verification of constraint "FK_CONSTRAINT" has failed.
%RMU-I-ENDVCONST, completed verification of constraints for database DBASE
...

Oracle recommends the regular use of RMU Verify to monitor the integrity of
your databases.

To correct the problem in constraint definitions created using earlier releases
of Oracle Rdb, first fix the database files, either by dropping and recreating the
offending constraint definitions or by recreating the database files from EXPORT
/IMPORT interchange files. Then, recreate any Oracle Rdb backup files for the
databases (files with filename extensions of .RBF).

• For an existing Rdb database, alter the table definition to drop the foreign
key constraint. Then, alter the table definition to recreate the constraint
using Oracle Rdb 7.1.4.1.

• For an existing database backup file, make a new backup file from a database
file in which the constraint definition has been recreated as explained in the
preceding bulleted item.

There is no known workaround for this problem.

This problem has been corrected in Oracle Rdb Release 7.1.4.1.

2.1.20 Bugchecks Accessing a REAL or DOUBLE PRECISION Column
Bug 4349150

If an application inserted invalid floating point data in a REAL or DOUBLE
PRECISION column, Rdb would bugcheck in various ways when that data was
accessed. Inserting invalid floating point data is an application bug and can
happen, for example, when uninitialized host language variables are used as a
source for column data in an insert.

For example, suppose a table T was defined with a REAL column named R. If an
F-Float format Not-a-number (NaN) value was stored in column R, the following
SQL statements demonstrate the kinds of bugcheck failures that were occurring.

2–24 Software Errors Fixed in Oracle Rdb Release 7.1.4.1

Simple select:
SQL> select R from T;
R
%RDMS-I-BUGCHKDMP, generating bugcheck dump file XXXXX:[XXXX]SQLBUGCHK.DMP;
%SQL-F-BUGCHK, There has been a fatal error. Please contact your Oracle
support representative. SQL$EEP - 4

Type conversion:
SQL> select cast(R as varchar(15)) FROM T;
%RDMS-I-BUGCHKDMP, generating bugcheck dump file XXXXX:[XXXX]RDSBUGCHK.DMP;
%COSI-F-UNEXPERR, unexpected system error
-SYSTEM-E-ACCVIO, access violation, reason mask=00, virtual address=
0000000000000000, PC=0000000000000000, PS=00000000

Arithmetic:
SQL> select (R + 1.0) from T
%RDMS-I-BUGCHKDMP, generating bugcheck dump file XXXXX:[XXXX]RDSBUGCHK.DMP;
%COSI-F-UNEXPERR, unexpected system error
-SYSTEM-E-ACCVIO, access violation, reason mask=00, virtual address=
0000000000000000, PC=0000000000000000, PS=00000000

As a workaround for this problem, update the rows to put valid floating point
data in the problem columns.

This problem has been corrected in Oracle Rdb Release 7.1.4.1. In the case of a
simple select (like the first example above), the output field in the display is filled
with asterisks ("*"). In the other examples where Rdb tries to convert datatypes
or do arithmetic, an %RDB-E-ARITH_EXCEPT error is returned.

2.1.21 Connection Name Longer than 31 Octets Mishandled
Bug 4380993

Starting in Oracle Rdb Release 7.1.4, the 31 octet name limit for connection
names began to be enforced. Unfortunately, if a connection name was submitted
which had greater than the allowed length of 31 octets, the name would be
silently truncated. This has been corrected so that the CONNECT statement is
rejected with a %SQL-E-NAMTOOBIG error.

In addition, if a SET CONNECT or DISCONNECT statement were submitted
with a name larger than 31 octets, the error text associated with the returned
%SQL-E-NOSUCHCON error sometimes contained non-printing characters. This
has been fixed so that these extraneous characters will no longer appear.

As a workaround, use a connection name of 31 octets or less.

This problem has been corrected in Oracle Rdb Release 7.1.4.1.

2.1.22 Loss of NULL Setting for Imported LIST OF BYTE VARYING Columns
Bug 4384906

In prior versions of Oracle Rdb V7.1, the IMPORT command would loose the
NULL attribute for LIST OF BYTE VARYING columns. Instead these columns
would be imported as empty lists.

The following example shows the difference before and after an IMPORT.

Software Errors Fixed in Oracle Rdb Release 7.1.4.1 2–25

SQL> attach ’filename PERSONNEL’;
SQL> insert into resumes values (’00167’, null);
1 row inserted
SQL> select * from resumes;
EMPLOYEE_ID RESUME
00167 NULL
1 row selected
SQL> commit;
SQL> export database alias RDB$DBHANDLE into PERS.RBR;
SQL> disconnect all;
SQL> drop database filename PERSONNEL;
SQL> import database from PERS.RBR filename PERSONNEL.RDB;
SQL> select * from resumes;
EMPLOYEE_ID RESUME
00167 0:0:0
1 row selected
SQL> commit;

This problem affects all LIST OF BYTE varying columns in user defined tables.

The column’s NULL attribute is lost and the segmented string id appears as 0:0:0
when displayed by Interactive SQL. If a cursor is opened on such LIST OF BYTE
VARYING columns then it will act like an empty list and return no data, just as
it would if the NULL attribute was on. However, applications that test a LIST
column using IS NULL or IS NOT NULL will possibly match a different set of
rows.

This problem has been corrected in Oracle Rdb Release 7.1.4.1.

2.1.23 Bugchecks in PSII2SPLITNODE When Using Ranked Indexes
Bug 4324725

When inserting rows into a table with indexes of TYPE IS SORTED RANKED, it was
possible that a bugcheck could occur in the routine PSII2SPLITNODE.

The exception occurred when the 65535th row was added to a particular key
value, and the dbkey was inserted into an overflow node and the level one node
contained exactly one key value and had two or fewer free bytes.

The following example shows the bugcheck footprint for an index that only
contains one key value.

COSI-F-BUGCHECK, internal consistency failure
Exception occurred at PSII2SPLITNODE + 00000390
Called from PSII2CASETOPM1 + 000006C8
Called from PSII2INSERTTREE + 000001FC
Called from RDMS$$KOD_INSERT_TREE + 00002954

For indexes with more than one key value, the bugcheck footprint would be
slightly different.

COSI-F-BUGCHECK, internal consistency failure
Exception occurred at PSII2SPLITNODE + 00000390
Called from PSII2BALANCE + 00000DEC
Called from PSII2INSERTT + 00000548
Called from PSII2INSERTT + 0000042C

The index is not corrupt but repeated attempts to insert such a record will fail
with the same exception. If the index is dropped, the row may be inserted, and
the index can be rebuilt correctly. A rebuild of the index would likely eliminate
the bugcheck.

The problem can be avoided by either using alternate index types or adding fields
to the key value to make the index more unique.

2–26 Software Errors Fixed in Oracle Rdb Release 7.1.4.1

This problem has been corrected in Oracle Rdb Release 7.1.4.1.

2.1.24 Wrong Result from UNION Query with Outer Join Leg
Bug 4392374

The following query should find one row:

set flags ’strategy,detail’;
SELECT sec_id, busdate, tc_code
FROM (SELECT

SP_sec_id,
SP_busdate,
SP_tc_code,
SP_rlc_code,
SP_stc_id,
SP_part_id

FROM
(SELECT
SEC.sec_id,
SEC.sec_sub_id,
ABD.busdate,
STD.tc_code,
STD.rlc_code,
STD.stc_id,
OPA.part_id
FROM STD STD,

ABD ABD,
OPA OPA,
RLC RLC,
STC STC,
SEC SEC

WHERE SEC.es_date <= ABD.busdate
AND SEC.ee_date >= ABD.busdate
AND SEC.inst_code = 1
AND STD.es_date <= ABD.busdate
AND STD.ee_date >= ABD.busdate
AND STD.sec_id = SEC.sec_id
AND OPA.sec_id = SEC.sec_id
AND STD.rlc_code = RLC.rlc_code
AND RLC.es_date <= ABD.busdate
AND RLC.ee_date >= ABD.busdate
AND STD.stc_id = STC.stc_id
AND STC.es_date <= ABD.busdate
AND STC.ee_date >= ABD.busdate
) AS SP

(SP_sec_id,
SP_sec_sub_id,
SP_busdate,
SP_tc_code,
SP_rlc_code,
SP_stc_id,
SP_part_id
)

LEFT OUTER JOIN
(SELECT
DIV1.shr_id,
DIV1.ex_div_date,
DIV1.div_cur_code,
SUM(DIV1.div_value)
FROM
DIV DIV1,
ABD ABD1,
SEC SEC1,
STD STD1
WHERE DIV1.ex_div_date = ABD1.busdate

Software Errors Fixed in Oracle Rdb Release 7.1.4.1 2–27

AND DIV1.div_cur_code = STD1.tc_code
AND STD1.es_date <= ABD1.busdate
AND STD1.ee_date >= ABD1.busdate
AND SEC1.sec_sub_id = DIV1.shr_id
AND STD1.sec_id = SEC1.sec_id
AND SEC1.es_date <= ABD1.busdate
AND SEC1.ee_date >= ABD1.busdate
AND SEC1.inst_code = 1
GROUP BY
DIV1.shr_id,
DIV1.ex_div_date,
DIV1.div_cur_code
) AS DIVSEC

(DIVSEC_shr_id,
DIVSEC_ex_div_date,
DIVSEC_div_cur_code,
DIVSEC_div_value)

ON SP_sec_sub_id = DIVSEC_shr_id AND
DIVSEC_div_cur_code = SP_tc_code AND
DIVSEC_ex_div_date = SP_busdate

UNION ALL
SELECT

SEC.sec_id,
ABD.busdate,
STD.tc_code,
STD.rlc_code,
STD.stc_id,
OPA.part_id

FROM STD STD,
SEC SEC,
OPA OPA,
ABD ABD,
RLC RLC,
STC STC

WHERE SEC.es_date <= ABD.busdate
AND SEC.ee_date >= ABD.busdate
AND SEC.inst_code <> 1
AND STD.es_date <= ABD.busdate
AND STD.ee_date >= ABD.busdate
AND STD.sec_id = SEC.sec_id
AND OPA.sec_id = SEC.sec_id
AND STD.rlc_code = RLC.rlc_code
AND RLC.es_date <= ABD.busdate
AND RLC.ee_date >= ABD.busdate
AND STD.stc_id = STC.stc_id
AND STC.es_date <= ABD.busdate
AND STC.ee_date >= ABD.busdate
)
as OM_STATIC_VIEW (
sec_id,
busdate,
tc_code,
rlc_code,
stc_id,
part_id
)

WHERE sec_id = 32978 AND busdate = ’24-MAY-2005’;
Tables:
0 = STD
1 = ABD
2 = OPA
3 = RLC
4 = STC
5 = SEC
6 = DIV

2–28 Software Errors Fixed in Oracle Rdb Release 7.1.4.1

7 = ABD
8 = SEC
9 = STD
10 = STD
11 = SEC
12 = OPA
13 = ABD
14 = RLC
15 = STC

Conjunct: (<mapped field> = 32978) AND (<mapped field> = ’24-MAY-2005’)
Merge of 1 entries
Merge block entry 1
Merge of 2 entries
Merge block entry 1
Conjunct: 5.sec_id = 32978
Conjunct: 1.busdate = ’24-MAY-2005’
Conjunct: 5.sec_id = 32978 <== See Note1
Conjunct: 1.busdate = ’24-MAY-2005’
Match (Left Outer Join) <== See Note2
Outer loop
Sort: 1.busdate(a), 0.tc_code(a),

5.sec_sub_id(a) <== See Note3
Merge of 1 entries
Merge block entry 1
Cross block of 6 entries
Cross block entry 1
Conjunct: 1.busdate = ’24-MAY-2005’
Index only retrieval of relation 1:ABD
Index name ABD_U_PRM [1:1] Direct lookup
Keys: <mapped field> = ’24-MAY-2005’

Cross block entry 2
Conjunct: 4.es_date <= 1.busdate
Conjunct: 4.ee_date >= 1.busdate
Get Retrieval by index of relation 4:STC
Index name STC_U_PRM [0:0]

Cross block entry 3
Conjunct: 0.es_date <= 1.busdate
Conjunct: 0.ee_date >= 1.busdate
Get
Retrieval by index of relation 0:STD
Index name STD_U_FRG_7 [1:1]
Keys: 0.stc_id = 4.stc_id

Cross block entry 4
Conjunct: 5.ee_date >= 1.busdate
Get Retrieval by index of relation 5:SEC <== See Note2
Index name SEC_U_FRG_7 [2:3]
Keys: (5.inst_code = 1) AND (0.sec_id =

5.sec_id) AND (5.es_date <=
1.busdate)

Bool: 5.sec_id = 32978
Cross block entry 5
Conjunct: 3.ee_date >= 1.busdate
Get Retrieval by index of relation 3:RLC
Index name RLC_U_PRM [1:2]
Keys: (0.rlc_code = 3.rlc_code)

AND (3.es_date <= 1.busdate)
Cross block entry 6
Get Retrieval by index of relation 2:OPA
Index name OPA_U_PRM [1:1] Direct lookup
Keys: 2.sec_id = 5.sec_id

Inner loop
Temporary relation
Sort: 6.ex_div_date(a), 6.div_cur_code(a), 6.shr_id(a)
Merge of 1 entries
Merge block entry 1

Software Errors Fixed in Oracle Rdb Release 7.1.4.1 2–29

Aggregate: 0:SUM (6.div_value)
Sort: 6.shr_id(a), 6.ex_div_date(a), 6.div_cur_code

(a)
Cross block of 4 entries
Cross block entry 1
Index only retrieval of relation 7:ABD
Index name ABD_U_PRM [0:0]

Cross block entry 2
Get Retrieval by index of relation 6:DIV
Index name DIV_U_ALT_1 [1:1]
Keys: 6.ex_div_date = 7.busdate

Cross block entry 3
Conjunct: 8.ee_date >= 7.busdate
Conjunct: 8.inst_code = 1
Get Retrieval by index of relation 8:SEC
Index name SEC_U_FRG_8 [1:2]
Keys: (8.sec_sub_id = 6.shr_id) AND (

8.es_date <= 7.busdate)
Cross block entry 4
Conjunct: (6.div_cur_code = 9.tc_code)

AND (9.ee_date >= 7.busdate)
Get
Retrieval by index of relation 9:STD
Index name STD_U_PRM [1:2]
Keys: (9.sec_id = 8.sec_id) AND (

9.es_date <= 7.busdate)
Merge block entry 2
Cross block of 6 entries
Cross block entry 1
Conjunct: 13.busdate = ’24-MAY-2005’
Index only retrieval of relation 13:ABD
Index name ABD_U_PRM [1:1] Direct lookup
Keys: <mapped field> = ’24-MAY-2005’

Cross block entry 2
Conjunct: 15.es_date <= 13.busdate
Conjunct: 15.ee_date >= 13.busdate
Get Retrieval by index of relation 15:STC
Index name STC_U_PRM [0:0]

Cross block entry 3
Conjunct: 10.es_date <= 13.busdate
Conjunct: 10.ee_date >= 13.busdate
Get Retrieval by index of relation 10:STD
Index name STD_U_FRG_7 [1:1]
Keys: 10.stc_id = 15.stc_id

Cross block entry 4
Conjunct: 14.ee_date >= 13.busdate
Get Retrieval by index of relation 14:RLC
Index name RLC_U_PRM [1:2]
Keys: (10.rlc_code = 14.rlc_code) AND

(14.es_date <= 13.busdate)
Cross block entry 5
Conjunct: (11.ee_date >= 13.busdate) AND (

11.inst_code <> 1)
Get Retrieval by index of relation 11:SEC
Index name SEC_U_PRM [1:2]
Keys: (10.sec_id = 11.sec_id) AND (11.es_date

<= 13.busdate)
Bool: 11.sec_id = 32978

Cross block entry 6
Get Retrieval by index of relation 12:OPA
Index name OPA_U_PRM [1:1] Direct lookup
Keys: 12.sec_id = 11.sec_id

0 rows selected

2–30 Software Errors Fixed in Oracle Rdb Release 7.1.4.1

Note1:: The conjunct "5.sec_id = 32978" is generated from the predicate
"sec_id = 32978" since sec_id is a mapped column from the
OM_STATIC_VIEW (a derived table) which contains the UNION query with
the first leg as a left outer join and the second leg as a regular
join subquery.

Note2:: The match strategy is used for the left outer join operation and
thus it requires a sort node. The sort operation in Rdb always
pre-loaded the records from the table into the sort buffer before
the actual record retrieval.

Note3:: When the conjunct "5.sec_id = 32978" is evaluated, the column
"5.sec_id" contains a stale value from the table 5:SEC
instead of the updated value from the sort buffer. This causes the
query to return FALSE even though the correct record is found.

As a workaround, the query works if the index SEC_U_FRG_7 for SEC table is
dropped since the query now switches from match to cross strategy for the left
outer join operation without the sort node. This could also happen if SQL flags is
set to ’index_column_group’ or ’old_cost_model’.

The following is the strategy output of the same query after the index SEC_U_
FRG_7 is dropped.

Conjunct: (<mapped field> = 32978) AND (<mapped field> = ’24-MAY-2005’)
Merge of 1 entries
Merge block entry 1
Merge of 2 entries
Merge block entry 1
Conjunct: 5.sec_id = 32978 <== See Note4
Conjunct: 1.busdate = ’24-MAY-2005’
Cross block of 2 entries (Left Outer Join) <== See Note4
Cross block entry 1
Merge of 1 entries
Merge block entry 1
Cross block of 6 entries
Cross block entry 1
Conjunct: 1.busdate = ’24-MAY-2005’
Index only retrieval of relation 1:ABD
Index name ABD_U_PRM [1:1] Direct lookup
Keys: <mapped field> = ’24-MAY-2005’

Cross block entry 2
Conjunct: (5.ee_date >= 1.busdate) AND (

5.inst_code = 1)
Get Retrieval by index of relation 5:SEC <== See Note4
Index name SEC_U_PRM [1:2]
Keys: (<mapped field> = 32978) AND (5.es_date <=

1.busdate)
Cross block entry 3
Conjunct: 4.es_date <= 1.busdate
Conjunct: 4.ee_date >= 1.busdate
Get Retrieval by index of relation 4:STC
Index name STC_U_PRM [0:0]

Cross block entry 4
Conjunct: 0.ee_date >= 1.busdate
Conjunct: 0.stc_id = 4.stc_id
Get
Retrieval by index of relation 0:STD
Index name STD_U_PRM [1:2]
Keys: (0.sec_id = 5.sec_id) AND (

0.es_date <= 1.busdate)
Cross block entry 5
Get Retrieval by index of relation 2:OPA
Index name OPA_U_PRM [1:1] Direct lookup
Keys: 2.sec_id = 5.sec_id

Cross block entry 6

Software Errors Fixed in Oracle Rdb Release 7.1.4.1 2–31

Conjunct: 3.ee_date >= 1.busdate
Get Retrieval by index of relation 3:RLC
Index name RLC_U_PRM [1:2]
Keys: (0.rlc_code = 3.rlc_code)

AND (3.es_date <= 1.busdate)
Cross block entry 2
Conjunct: (5.sec_sub_id = 6.shr_id) AND (

6.div_cur_code = 0.tc_code) AND (
6.ex_div_date = 1.busdate)

Merge of 1 entries
Merge block entry 1
Aggregate: 0:SUM (6.div_value)
Sort: 6.shr_id(a), 6.ex_div_date(a), 6.div_cur_code

(a)
Cross block of 4 entries
Cross block entry 1
Index only retrieval of relation 7:ABD
Index name ABD_U_PRM [0:0]

Cross block entry 2
Conjunct: (5.sec_sub_id = 6.shr_id) AND (

6.div_cur_code = 0.tc_code) AND
(6.ex_div_date = 1.busdate)

Conjunct: 6.ex_div_date = 7.busdate
Get Retrieval by index of relation 6:DIV
Index name DIV_U_ALT_1 [2:2]
Keys: (6.ex_div_date = 7.busdate) AND (

5.sec_sub_id = 6.shr_id)
Cross block entry 3
Conjunct: 8.ee_date >= 7.busdate
Conjunct: 8.inst_code = 1
Get Retrieval by index of relation 8:SEC
Index name SEC_U_FRG_8 [1:2]
Keys: (8.sec_sub_id = 6.shr_id) AND (

8.es_date <= 7.busdate)
Cross block entry 4
Conjunct: (6.div_cur_code = 9.tc_code)

AND (9.ee_date >= 7.busdate)
Get
Retrieval by index of relation 9:STD
Index name STD_U_PRM [1:2]
Keys: (9.sec_id = 8.sec_id) AND (

9.es_date <= 7.busdate)
Merge block entry 2
Cross block of 6 entries
Cross block entry 1
Conjunct: 13.busdate = ’24-MAY-2005’
Index only retrieval of relation 13:ABD
Index name ABD_U_PRM [1:1] Direct lookup
Keys: <mapped field> = ’24-MAY-2005’

Cross block entry 2
Conjunct: 15.es_date <= 13.busdate
Conjunct: 15.ee_date >= 13.busdate
Get Retrieval by index of relation 15:STC
Index name STC_U_PRM [0:0]

Cross block entry 3
Conjunct: 10.es_date <= 13.busdate
Conjunct: 10.ee_date >= 13.busdate
Get Retrieval by index of relation 10:STD
Index name STD_U_FRG_7 [1:1]
Keys: 10.stc_id = 15.stc_id

Cross block entry 4
Conjunct: 14.ee_date >= 13.busdate
Get Retrieval by index of relation 14:RLC
Index name RLC_U_PRM [1:2]
Keys: (10.rlc_code = 14.rlc_code) AND

2–32 Software Errors Fixed in Oracle Rdb Release 7.1.4.1

(14.es_date <= 13.busdate)
Cross block entry 5
Conjunct: (11.ee_date >= 13.busdate) AND (

11.inst_code <> 1)
Get Retrieval by index of relation 11:SEC
Index name SEC_U_PRM [1:2]
Keys: (10.sec_id = 11.sec_id) AND (11.es_date

<= 13.busdate)
Bool: 11.sec_id = 32978

Cross block entry 6
Get Retrieval by index of relation 12:OPA
Index name OPA_U_PRM [1:1] Direct lookup
Keys: 12.sec_id = 11.sec_id

sec_id busdate tc_code
32978 24-MAY-2005 00:00:00.00 CHF

1 row selected

Note4:: The cross strategy is used for the left outer join operation instead
of a match strategy. Since no sort is required and the column
5.sec_id in the conjunct "5.sec_id = 32978" did not get
pre-loaded, as in the case of a sort operation, it was correctly

retrieved from the table on the fly during the cross operation.

The key parts of this query which contributed to the situation leading to the error
are these:

1. The main query selects a particular row from either a view or derived table of
a union query where the first leg is a left outer join subquery and the second
leg is a regular join subquery.

2. The column of the equality predicate is mapped via the view or derived table
to the same base table which is included in both legs of the left outer join
subquery and the second UNION leg.

3. The query applies a match strategy for the left outer join operation with a
sort node at the outer loop and another sort node at the inner loop.

This problem has been corrected in Oracle Rdb Release 7.1.4.1.

2.1.25 COSI_MEM_FREE_VMLIST Bugcheck with Vertical Partitioning
Bug 4460398

With vertical partitioning in use, the following bugcheck was possible:

***** Exception at 0091B704 : COSI_MEM_FREE_VMLIST + 00000094
%SYSTEM-F-ACCVIO, access violation, reason mask=04,
virtual address=000000000008308D, PC=000000000091B704, PS=0000001B

This problem has been corrected in Oracle Rdb Release 7.1.4.1.

2.1.26 Bugcheck from INSERT With Partition Index
Bug 4477862

The following query bugchecks:

SQL>INSERT INTO TBL1 VALUES (1,2,3);
%DEBUG-I-DYNMODSET, setting module RDMS$PREEXEMSC
%SYSTEM-F-ACCVIO, access violation, reason mask=00, virtual address=000000000000
0060, PC=00000000006A2358, PS=00000018
1816: IF .CXPR [CXPR$L_OPERATOR] NEQU BLR$K_MISSING

where the tables are defined as follows:

CREATE TABLE TBL1 (TBL1_P1 INT, TBL1_P2 INT, TBL1_P3 INT, CONSTRAINT TBL1_PRIM
PRIMARY KEY (TBL1_P1, TBL1_P2) DEFER);

Software Errors Fixed in Oracle Rdb Release 7.1.4.1 2–33

CREATE TABLE TBL2 (TBL2_P1 INT, TBL2_P2 INT, TBL2_P3 INT, CONSTRAINT TBL2_FOR
FOREIGN KEY (TBL2_P1, TBL2_P2) REFERENCES TBL1 (TBL1_P1, TBL1_P2) DEFER);

CREATE INDEX IDX1 ON TBL1 (TBL1_P1 DESC, TBL1_P2 DESC) STORE USING (TBL1_P1)
IN A1 WITH LIMIT OF (2)
IN A2 WITH LIMIT OF (1)
OTHERWISE IN A3;
CREATE INDEX IDX2 ON TBL2 (TBL2_P1, TBL2_P2) ;
COMMIT;

UPDATE RDB$RELATIONS SET RDB$CARDINALITY = 306
WHERE RDB$RELATION_NAME=’TBL2’;
COMMIT;

As a workaround, the query works if the cardinality of table TBL2 is updated to
a number below 306 rows.

UPDATE RDB$RELATIONS SET RDB$CARDINALITY = 305
WHERE RDB$RELATION_NAME=’TBL2’;
COMMIT;

This problem with the INSERT statement occurs when the following conditions
are met:

1. The table TBL1 contains a primary constraint and the table TBL2 contains a
foreign key constraint referencing the primary keys of TBL1.

2. The index for the table TBL1 is a partition index keying on the leading
primary keys.

3. The cardinality of the table TBL2 is updated to a number such that the
optimizer chooses a match strategy over cross. In this case, the cardinality
number is 306.

This problem has been corrected in Oracle Rdb Release 7.1.4.1.

2.1.27 Journals Not Initialized After Backup if Backing Up to Tape Device
Bug 2808539

If after image journal backups were being done to tape and the AIJs being backed
up were circular AIJs, the backed up journal would not get properly initialized.
This could lead to various issues such as journaling being shutdown with a
‘‘journal is not empty’’ error. When that occurred, the journal state displayed by
RMU/DUMP/HEADER=JOURNAL would show the following lines of output:

File is inaccessible
journal has been made inaccessible by system
journal is not empty

Other symptoms were also possible. The database recovery process (DBR) could
fail with a bugcheck in DBR$RECOVER_ALL. Attempts to recover a database
using an existing journal that was not properly re-initialized could fail with
AIJCORRUPT errors. For example:

%RMU-W-AIJCORRUPT, journal entry 1451795/3364123 contains a new AIJBL that
doesn’t have the start flag set

This problem was introduced in Oracle Rdb Release 7.1.2.3.

The problem can be avoided by backing up the journals to a disk destination.

This problem has been corrected in Oracle Rdb Release 7.1.4.1.

2–34 Software Errors Fixed in Oracle Rdb Release 7.1.4.1

2.1.28 Constant Snapshot File Growth
With Oracle Rdb Release 7.1.4, it was possible for snapshot files to continually
extend. This would occur after an abnormal user termination was handled by a
database recovery (DBR) process. The problem was seen after installing Oracle
Rdb Release 7.1.4.

There are two data structures in the database root (.RDB) file that are used to
represent the state of a database user:

1. The RTUPB list

2. The TSNBLKs

In Release 7.1.4, when the DBR process would clear the failed user’s entries
in the root file, it would neglect to clear the TSNBLK entry. That would cause
Oracle Rdb to include the old user’s last transaction sequence number (TSN)
when determining what TSN should be granted to new snapshot (read only)
transactions. Typically, the TSNBLK entry would soon get reused by another
user and no symptoms of the problem would be seen. Occasionally, it was possible
for the old TSNBLK entry to linger for quite some time. As long as the old TSN
was still in the TSNBLK, pages in the snapshot files with TSNs greater than the
old user’s TSN could not be reclaimed. This would cause the snapshot files to
grow since pages in the file could not be reused.

To determine if this problem is affecting a database, the following steps can be
done:

1. Determine the TSN being granted to all snapshot transactions:

$ RMU/DUMP/HEADER/OPTION=DEBUG/OUTPUT=TEMP.TXT DB
$ SEARCH TEMP.TXT /WINDOW=(0,3) "Snapshot transaction in progress"

Snapshot transaction in progress
Last Process quiet-point was AIJ sequence 0
Transaction sequence number is 0:3392

Note that in the above example the TSN is 3392.

2. See if there is a TSNBLK entry showing an active transaction with that TSN:

$ SEARCH TEMP.TXT 3392
Transaction sequence number is 0:3392

SLOT[1.] SIP TSN = 0:3392, COMMIT_TSN = 0:0.
SLOT[2.] WIP TSN = 0:3392, COMMIT_TSN = 0:3390.

Note that in the above example there is a line that contains ‘‘WIP TSN
= 0:3392’’. This indicates that there should be a user with a read write
transaction with sequence number 3392.

3. Confirm that there are no read-write transactions active with that TSN:

$ PIPE SEARCH /WINDOW=(0,3) TEMP.TXT "Read/write transaction in progress" | -
SEARCH SYS$INPUT "0:3392"

%SEARCH-I-NOMATCHES, no strings matched

No read write transactions exist with that TSN, thus the TSNBLK contains
an invalid entry.

This problem can be corrected by forcing the TSNBLK entry to get reused. That
can be done by adding multiple concurrent attaches to the database until the
TSNBLK entry is reclaimed by one of the new users. For example:

Software Errors Fixed in Oracle Rdb Release 7.1.4.1 2–35

SQL> ATTACH ’ALIAS A1 FILENAME DB’;
SQL> ATTACH ’ALIAS A2 FILENAME DB’;
SQL> ATTACH ’ALIAS A3 FILENAME DB’;
SQL> ATTACH ’ALIAS A4 FILENAME DB’;
...

Since each TSNBLK can only be used by one node in the cluster, it may be
necessary to do attaches from each node that currently has the database open.
Continue to add attaches to the database until the ‘‘WIP TSN =’’ string noted
above is no longer found in the RMU/DUMP/HEADER output.

This problem has been corrected in Oracle Rdb Release 7.1.4.1. The TSNBLK is
now properly cleared by the DBR when recovering a failed user.

2.1.29 Select Count Query with Host Variable Returns Wrong Result
Bug 4208119

The following select count query, which contains a WHERE clause with a host
variable, returns the wrong result.

declare :x integer;
begin
set :x = 1;
set :x = 1;
end;

sel count(*) from employees where :x = 2;
Tables:
0 = EMPLOYEES

Aggregate: 0:COUNT (*)
Index only retrieval of relation 0:EMPLOYEES
Index name EMP_EMPLOYEE_ID [0:0]

100
1 row selected

The query works if the host variable is removed, as in the following example.

sel count(*) from employees where 1 = 2;
Tables:
0 = EMPLOYEES

Aggregate: 0:COUNT (*)
Conjunct: 1 = 2
Index only retrieval of relation 0:EMPLOYEES
Index name EMP_EMPLOYEE_ID [0:0]

0
1 row selected

The query also works if the count is removed, as in the following example.

sel * from employees where :x = 2;
Tables:
0 = EMPLOYEES

Leaf#01 FFirst 0:EMPLOYEES Card=10000
Bool: <var0> = 2
BgrNdx1 EMP_EMPLOYEE_ID [0:0] Fan=17
Bool: <var0> = 2

0 rows selected

This problem has been corrected in Oracle Rdb Release 7.1.4.1.

2–36 Software Errors Fixed in Oracle Rdb Release 7.1.4.1

2.1.30 UNION Join Query with Host Variable in the Predicate Returns Wrong
Result

Bug 4208119

The following UNION join query with host variable in the predicate returns the
wrong result.

DECLARE :H_BID INTEGER;
DECLARE :H_CUST VARCHAR(5);
BEGIN
SET :H_BID = 1;
SET :H_CUST = ’USCC’;
END;

SELECT T1.BID, T1.CTY
FROM T1 INNER JOIN (

SELECT CTY, MRK FROM T2
WHERE MRK IN (2, 20)
UNION
SELECT CTY, MRK FROM T2
WHERE MRK NOT IN (2, 20)
) AS T2
ON T1.CTY = S.CTY AND T1.MRK = S.MRK

WHERE T1.BID = :H_BID
AND (T1.CUSTOMER = :H_CUST

OR :H_CUST = ’’) ; <== see Note
Tables:
0 = T1
1 = T2
2 = T2

Cross block of 2 entries
Cross block entry 1
Leaf#01 FFirst 0:T1 Card=1
Bool: (0.BID = <var0>) AND ((0.CUSTOMER = <var1>) OR (<var2> =

’’))
BgrNdx1 T1_IDX01 [1:1] Fan=15
Keys: 0.BID = <var0>

Cross block entry 2
Conjunct: (0.CTY = <mapped field>) AND (0.MRK =

<mapped field>)
Merge of 1 entries
Merge block entry 1
Reduce: <mapped field>, <mapped field>
Sort: <mapped field>(a), <mapped field>(a)
Merge of 2 entries
Merge block entry 1
Conjunct: (1.MRK = 2) OR (1.MRK = 20)
Index only retrieval of relation 1:T2
Index name T2_IDX01 [0:0]

Merge block entry 2
Conjunct: <var2> = ’’ <== see Note
Conjunct: 0.BID = <var0>
Conjunct: (2.MRK <> 2) AND (2.MRK <> 20)
Index only retrieval of relation 2:T2
Index name T2_IDX01 [0:0]

0 rows selected

Note:: The conjunct ":H_CUST = ’’" is pushed down to the second leg of the
UNION clause. Since this is the right side operand of the OR predicate it cannot
be stripped out and pushed down without the other operand.

Software Errors Fixed in Oracle Rdb Release 7.1.4.1 2–37

The query works if the host variable in one of the predicates is replaced by the
text literal ’USCC’, as in the following example.

SELECT T1.BID, T1.CTY
FROM T1 INNER JOIN (

SELECT CTY, MRK FROM T2
WHERE MRK IN (2, 20)
UNION
SELECT CTY, MRK FROM T2
WHERE MRK NOT IN (2, 20)
) AS T2
ON T1.CTY = S.CTY AND T1.MRK = S.MRK

WHERE T1.BID = :H_BID
AND (T1.CUSTOMER = :H_CUST

OR ’USCC’ = ’’ ! <== replaced with ’USCC’
) ;

Tables:
0 = T1
1 = T2
2 = T2

Cross block of 2 entries
Cross block entry 1
Leaf#01 FFirst 0:T1 Card=1
Bool: (0.BID = <var0>) AND ((0.CUSTOMER = <var1>) OR (’USCC’ =

’’))
BgrNdx1 T1_IDX01 [1:1] Fan=15
Keys: 0.BID = <var0>

Cross block entry 2
Conjunct: (0.CTY = <mapped field>) AND (0.MRK =

<mapped field>)
Merge of 1 entries
Merge block entry 1
Reduce: <mapped field>, <mapped field>
Sort: <mapped field>(a), <mapped field>(a)
Merge of 2 entries
Merge block entry 1
Conjunct: (1.MRK = 2) OR (1.MRK = 20)
Index only retrieval of relation 1:T2
Index name T2_IDX01 [0:0]

Merge block entry 2
Conjunct: 0.BID = <var0> <== see Note1
Conjunct: (2.MRK <> 2) AND (2.MRK <> 20)
Index only retrieval of relation 2:T2
Index name T2_IDX01 [0:0]

T1.BID T1.CTY
1 12

1 row selected

Note1:: Note that the conjunct "’USCC’ = ’’" does not appear in the second leg of
the UNION clause.

The key parts of this cursor query which contributed to the situation leading to
the error are these:

1. The main query selects from inner-joining a table with a UNION of two
sub-select queries.

2. The WHERE clause contains an OR predicate referencing a host variable
twice in the equality filters.

There is no known workaround for this problem.

This problem has been corrected in Oracle Rdb Release 7.1.4.1.

2–38 Software Errors Fixed in Oracle Rdb Release 7.1.4.1

2.1.31 Bugcheck in COSI_MEM_FREE_VMLIST After Update of Ranked Index
Bug 4191015

During updates on indexes of TYPE IS SORTED RANKED, it was possible that
memory could be overwritten and memory queues become corrupt. When the
memory queue was subsequently processed, a bugcheck would result.

In the following example, the update statement left a memory queue in this
corrupt state. During exit from SQL, while detaching from the database, the
memory queue was processed to free up the memory and a bugcheck resulted.

SQL> update some_table set some_key=626 where another_key=624;
32419 rows updated
SQL> commit;
SQL> exit
%RDMS-I-BUGCHKDMP, generating bugcheck dump file MBRADLEY_USR:[BRADLEY]
RDSBUGCHK.DMP;

The following example shows the exception and the first few calls from the
bugcheck.

%SYSTEM-F-ACCVIO, access violation, reason mask=04, virtual
address=0000000050000004, PC=00000000011D68E4, PS=0000000B

Saved PC = 0115C214 : RDMS$$RDMSCHEMA_UNLOAD_META + 00000434
Saved PC = 0115CB5C : RDMS$$RDMSCHEMA_UNLOAD_TABLE + 0000024C
Saved PC = 0117FCD4 : RDMS$$DETACH_DATABASE + 000002F4
Saved PC = 0117F944 : RDMS$TOP_DETACH_DATABASE + 00000424

In the reported case, the update completed sucessfully and the index was not
corrupt in any way.

There is no known workaround for this problem.

This problem has been corrected in Oracle Rdb Release 7.1.4.1.

2.1.32 ILLPAGCNT Exception Reading Large Table with a Dynamic Tactic
Bug 3194130

When the dynamic optimizer was chosen for a query and more than 268,435,455
dbkeys were read from a single index scan, the query would fail with an illegal
page count parameter exception.

The same problem also produced a bugcheck dump in versions prior to 7.1.

An example of this is shown below.

SQL> select * from t1 where f1>1 and f2>1 optimize for total time;
Leaf#01 BgrOnly T1 Card=300000000
BgrNdx1 I1 [1:0] Fan=308
BgrNdx2 I2 [1:0] Fan=308

%COSI-F-VASFULL, virtual address space full
-SYSTEM-F-ILLPAGCNT, illegal page count parameter
SQL>

The problem can be avoided by disabling the dynamic optimizer by either using a
query outline with EXECUTION OPTIONS NONE or using the MAX_STABILITY flag.

This problem has been corrected in Oracle Rdb Release 7.1.4.1.

Software Errors Fixed in Oracle Rdb Release 7.1.4.1 2–39

2.2 SQL Errors Fixed
2.2.1 SQL Precompiler (Pascal) Generates Incorrect Definition for

SQL_TINYINT Type
Bug 4121870

In Oracle Rdb Release 7.1.3, the Pascal support in the SQL Precompiler was
modified to make better use of recent OpenVMS Pascal compiler enhancements.
Unfortunately, the SQL_TINYINT definition is now no longer sharable when
using multiple SQL Precompiler modules in a Pascal Environment file.

The following example shows the error that is generated.

$ SQL$PRE /PASCAL PRE_COMP_TEST_MAIN

SQL_TINYINT = SQL_BYTE;
.^
%PASCAL-E-REDECL, A declaration of SQL_TINYINT already exists in environment
TEST$:PRE_COMP_TEST_MODULE.PEN
at line number 28 in file DISK12:[TESTER.SQL$PRE]PRE_COMP_TEST_MAIN.PAS;1
%PASCAL-E-ENDDIAGS, PASCAL completed with 1 diagnostic

This problem has been corrected in Oracle Rdb Release 7.1.4.1. The Pascal
[HIDDEN] attribute is now applied to SQL_TINYINT.

2.2.2 LOCK TABLE May Bugcheck if DROP TABLE Appears in Same
Transaction

Bug 4134139

In prior versions of Oracle Rdb, a SET TRANSACTION ... RESERVING of a table
followed by a DROP of the table referenced by the RESERVING clause and then
a LOCK TABLE of any table in this same transaction might generate a bugcheck
dump. The following example shows the problem.

SQL> set transaction read write wait reserving TAB1 for shared write;
SQL> lock table TAB1 for shared write mode wait;
SQL> rollback;
SQL> --
SQL> set transaction read write wait reserving TAB1 for shared write;
SQL> drop table TAB1;
SQL> create table TAB2 (col1 integer, col2 integer);
SQL> lock table TAB2 for shared write mode wait;
%RDMS-I-BUGCHKDMP, generating bugcheck dump file USER2:[TESTER]RDSBUGCHK.DMP;
%RDB-F-BUG_CHECK, internal consistency check failed
SQL> rollback;

This problem has been corrected in Oracle Rdb Release 7.1.4.1. LOCK TABLE
now correctly processes the reserving list of the transaction.

2.2.3 CREATE VIEW May Fail With a "Deadlock on Client" Error
Bug 4101404

In prior versions of Oracle Rdb, it was possible in rare cases for the CREATE
VIEW statement to fail with a DEADLOCK error. This could occur under the
following circumstances:

• The database is active with views created and dropped often. Over a long
period, this will result in the unique identifier for the view growing to the
maximum supported by Rdb.

2–40 Software Errors Fixed in Oracle Rdb Release 7.1.4.1

• Subsequent CREATE VIEW statements must scan the RDB$RELATIONS
system table looking for unused ID’s, that is, those that are freed by a DROP
VIEW.

• The view being defined references a view or table with COMPUTED BY
columns that also include table references (subselects).

The following example shows the problem.

SQL> create view DEPT_STATS as
cont> select DEPARTMENT_NAME, EMPTY_DEPARTMENT
cont> from DEPARTMENTS;
%RDB-E-DEADLOCK, request failed due to resource deadlock
-RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-DEADLOCK, deadlock on client ’.....0..’ 0000300B0000000400000055
SQL>

In this example, the computed column EMPTY_DEPARTMENT references
another COMPUTED BY column in DEPARTMENTS that references a different
table.

This problem has been corrected in Oracle Rdb Release 7.1.4.1. Rdb now correctly
handles the inner references to other tables during the locking of the view ID.

2.2.4 TRUNCATE TABLE Did Not Release Strong Lock on Table Until
DISCONNECT

Bug 3627324

The TRUNCATE TABLE statement did not correctly queue a commit/rollback
action to release locks for the target table in all cases. However, if the table had
SORTED or SORTED RANKED indices then this action was queued. Otherwise,
the lock on the table was retained until DISCONNECT time and prevented access
to the truncated table.

This problem has been corrected in Oracle Rdb Release 7.1.4.1. COMMIT and
ROLLBACK following a TRUNCATE table now release the strong metadata lock
on the table to allow sharing of the table with other applications. Please note
that TRUNCATE TABLE requires exclusive access to the table while it changes
metadata and data in the table and indices.

2.2.5 COMMENT ON COLUMN Failed When Applied to a View Definition
In prior versions of Oracle Rdb 7.1, the COMMENT ON TABLE statement would
apply a comment to a view and was equivalent to the COMMENT ON VIEW
statement. However, similar table related COMMENT ON statements would fail
with RDMS-F-NOCHGVW errors if the target was a view instead of a table.

The following example shows the errors reported by these commands.

SQL> comment on column current_job.JOB_START is ’’;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-NOCHGVW, the definition of a view may not be changed
SQL> comment on current_job
cont> (LAST_NAME is ’last name’,
cont> FIRST_NAME is ’first name’,
cont> JOB_START is ’job start’);
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-NOCHGVW, the definition of a view may not be changed

This problem has been corrected in Oracle Rdb Release 7.1.4.1. COMMENT ON
COLUMN and COMMENT ON with a list of column names can be used for a
table or a view definition.

Software Errors Fixed in Oracle Rdb Release 7.1.4.1 2–41

2.2.6 Unexpected SQL-F-CURALROPE Following Compound Statement or
CALL Statement

Bug 4301488

In Oracle Rdb Release 7.1.4, a problem was introduced that could cause SQL to
believe a cursor was still open after a COMMIT or ROLLBACK was executed in a
stored procedure (activated by the CALL statement) or in a compound statement
(BEGIN ... END).

The following example shows the unexpected error.

SQL> declare cursor2 read only table cursor for
cont> select college_name from colleges where college_code = ’BATE’;
SQL> open cursor2;
SQL> begin commit; end;
SQL> open cursor2;
SQL> begin commit; end;
SQL> open cursor2;
%SQL-F-CURALROPE, Cursor CURSOR2 was already open

Clearly the COMMIT statement closed the cursor but SQL did not detect that
change of state. This problem has been corrected in Oracle Rdb Release 7.1.4.1.

2.2.7 Unexpected Results When Using Host Variables in Subselects
Bug 2316744

In prior versions of Oracle Rdb, assignments to host variables might not be used
when subselects use these host variables inside conditional or control statements
(IF statement, CASE statement or FOR cursor loop).

Host variables are those declared in C, COBOL, FORTRAN, etc in a SQL$PRE
source module or in Interactive and Dynamic SQL using the DECLARE Variable
statement.

The following example shows the problem. The query should return the LAST_
NAME matching the EMPLOYEE_ID assigned to the host variable :OUT_VAL.
However, Oracle Rdb does not detect that the subselect uses a variable modified
within the scope of the IF statement and promotes the subselect into the query
for the IF statement. That is, Rdb evaluates the WHERE clause prior to the
assignment of the value in the IF body. The result is no matching rows found and
a NULL (shows as -1 for the indicator variable) result.

2–42 Software Errors Fixed in Oracle Rdb Release 7.1.4.1

SQL> declare :out_val char(5) = ’’;
SQL> declare :out_name varchar(40) = ’’;
SQL> declare :out_name_ind integer = 0;
SQL>
SQL> begin
cont> if exists (select count(*)
cont> from employees
cont> where employee_id = ’00164’)
cont> then
cont> set :out_val = ’00164’;
cont> set :out_name indicator :out_name_ind =
cont> (select trim(last_name)
cont> from employees
cont> where employee_id = :out_val);
cont> end if;
cont> end;
SQL>
SQL> print :out_val, :out_name, :out_name_ind;
OUT_VAL OUT_NAME OUT_NAME_IND
00164 -1
SQL>

Workarounds include: assigning the values prior to the conditional statement;
assigning to local variables (the DECLARE appears inside the compound
statement); and possibly assigning the results to the host variable after the
conditional statement.

Note

This problem does not exist for locally declared variables or parameters to
stored procedures and stored functions.

This problem has been corrected in Oracle Rdb Release 7.1.4.1. Oracle Rdb now
detects the update of the host variable and correctly processes the subselect.

2.2.8 Unexpected Bugcheck Reported When LIST OF BYTE VARYING Column
has NOT NULL Constraint

Bug 4354994

In prior versions or Oracle Rdb, defining a column of LIST OF BYTE VARYING,
LONG or LONG RAW with a NOT NULL constraint would cause both DROP
TABLE and TRUNCATE TABLE to fail with a bugcheck. In addition, if an
UPDATE statement assigned NULL to a column of these types, a similar
bugcheck was generated.

The following example shows the problem.

SQL> create table TEST_A
cont> (col_a integer
cont> ,col_b long raw
cont> not null deferrable);
SQL>
SQL> drop table TEST_A;
%RDMS-I-BUGCHKDMP, generating bugcheck dump file USER2:[TESTER]RDSBUGCHK.DMP;
%RDB-F-BUG_CHECK, internal consistency check failed
SQL>

The bugcheck dump summary is similar to this example:

COSI-F-BUGCHECK, internal consistency failure
Exception occurred at RDMS$$DTYPE_BLR + 00000D74

Software Errors Fixed in Oracle Rdb Release 7.1.4.1 2–43

Called from RDMS$$VERIFY_TABLE_CONSTRAINTS + 00002294
Called from RDMS$$CREATE_ECON + 00000618
Called from RDMS$$CREATE_EMOD + 000019F4

This problem has been corrected in Oracle Rdb Release 7.1.4.1. The NOT NULL
constraint is now correctly handled by UPDATE, DROP TABLE and TRUNCATE
TABLE.

2.2.9 DEFAULT Expression Fails for Declared Temporary Tables
Bug 4390079

In prior releases of Oracle Rdb V7.1, the use of the DEFAULT clause in an
INSERT or an UPDATE of a declared local temporary table might result in an
error message or in the assignment of an incorrect default value.

• If no created table or view exists with the same name as the declared
temporary table, then an error will be reported during the INSERT or
UPDATE statement:

%RDB-E-OBSOLETE_METADA, request references metadata objects that no longer exist
-RDMS-F-RELNOEXI, relation LOCAL_TABLE0 does not exist in this database

• If a created table or view exists with the same name as the declared
temporary table but with no matching column, then an error will be reported
during the INSERT or UPDATE statement:

%RDB-E-OBSOLETE_METADA, request references metadata objects that no longer exist
-RDMS-F-BAD_SYM, unknown field symbol - MCOL2

• If a created table or view exists with the same name as the declared
temporary table and with a matching column name, then an error may
be reported during the INSERT or UPDATE statement if the data type of the
DEFAULT is incompatible with the column in the temporary table.

%RDB-E-ARITH_EXCEPT, truncation of a numeric value at runtime
-COSI-F-INPCONERR, input conversion error

If the types are compatible, then the wrong DEFAULT may be assigned to the
temporary table.

The following example shows the reported error:

SQL> declare local temporary table module.local_table0
cont> (mcol1 char(7) default ’o--0--o’
cont> ,mcol2 integer default 4044
cont>);
SQL>
SQL> insert into module.local_table0 values (’qqq’, default);
%RDB-E-OBSOLETE_METADA, request references metadata objects that no longer exist
-RDMS-F-RELNOEXI, relation LOCAL_TABLE0 does not exist in this database

This problem has been corrected in Oracle Rdb Release 7.1.4.1.

2.2.10 DEFAULT Inherited from Domain now Displayed by SHOW TABLE
Bug 4424589

In prior releases of Oracle Rdb, the SHOW TABLE (COLUMN) output did not
display the DEFAULT inherited from domains used for the column definition.

2–44 Software Errors Fixed in Oracle Rdb Release 7.1.4.1

If the domain DEFAULT is overridden by a column level definition, then it is
this DEFAULT that is used by Oracle Rdb and shown by the SHOW TABLE
command. However, if no local definition is used then the domain’s DEFAULT
is inherited by the column. This value is now displayed by the SHOW TABLE
command.

SQL> create domain MONEY integer(2) default 0.00;
SQL>
SQL> create table EXPENSES
cont> (descr varchar(40)
cont> ,amt MONEY
cont> ,amt2 MONEY default 1.11
cont>);
SQL>
SQL> show table (column) EXPENSES
Information for table EXPENSES

Columns for table EXPENSES:
Column Name Data Type Domain
----------- --------- ------
DESCR VARCHAR(40)
AMT INTEGER(2) MONEY
Oracle Rdb default: 0
AMT2 INTEGER(2) MONEY
Oracle Rdb default: 1.11

SQL>

This problem has been corrected in Oracle Rdb Release 7.1.4.1.

2.2.11 Dynamic SQL Rounds Results from Division Operator
Bug 4165206

In previous versions of Oracle Rdb, the Dynamic SQL interface would determine
the result data type using the type and scale of the dividend. This lead to
rounded results if the dividend was a fixed point value. With this release of
Oracle Rdb, all numeric division computations return a REAL or DOUBLE
PRECISION value.

The following example shows the behavior in prior versions.

$ r test$tools:tester
Enter statement:
attach ’filename sql$database’;
Enter statement:
select 1/2 from rdb$database;
0/: 1
Enter statement:

In this example the result (0.5) is rounded to the target type of INTEGER to yield
a - possibly unexpected - value 1. Now Dynamic SQL uses a floating result and
gives the expected result.

$ r test$tools:tester
Enter statement:
attach ’filename sql$database’;
Enter statement:
select 1/2 from rdb$database;
0/: 0.500000
Enter statement:

This problem has been corrected in Oracle Rdb Release 7.1.4.1.

Software Errors Fixed in Oracle Rdb Release 7.1.4.1 2–45

2.2.12 SQL Incorrectly Truncated Multi-octet Characters when Using GB18030
and UTF8 Character Sets

Bug 4319811

In previous versions of Oracle Rdb, SQL would incorrectly determine that multi-
octet characters from the GB18030 or UTF8 character sets were truncated on
text copies when they were not actually truncated. As a result of this incorrect
determination, SQL would replace the last 2 or 3 octets of a multi-octet character
with underscore characters ("_").

In the following example, the value in hexadecimal is a valid 4 octet GB18030
character. However when a substring of the first character is extracted by SQL,
the character is incorrectly truncated and the last two octets of the character are
replaced with underscores.

SQL> set character length ’characters’;
SQL> select substring (_GB18030 X’8139D531’ from 1 for 1) from rdb$database;

9__
1 row selected

The correct output should have been:

SQL> select substring (_GB18030 X’8139D531’ from 1 for 1) from rdb$database;

9Õ1
1 row selected

This problem has been corrected in Oracle Rdb Release 7.1.4.1.

2.2.13 New COMMIT EVERY Clause Added to IMPORT DATABASE Command
Bug 4001638

In previous versions of Oracle Rdb, the IMPORT DATABASE statement would
import and load data rows in a single transaction. If the table was very large,
the recovery unit journal (RUJ) file might become quite large. To help reduce the
RUJ file usage during IMPORT, a new COMMIT EVERY n ROWS clause has
been added. This clause instructs SQL IMPORT to commit at regular intervals.
If the IMPORT should subsequently fail, then the table will be left with a partial
set of rows. The default is COMMIT EVERY TABLE.

Format

import-options=
ACL

NO BANNER
BATCH UPDATE
CDD LINKS
DATA
FORWARD_REFERENCES
TRACE

COMMIT EVERY TABLE
COMMIT EVERY n ROWS

The following example shows the use of this clause.

2–46 Software Errors Fixed in Oracle Rdb Release 7.1.4.1

SQL> import database
cont> from ’TEST$DB_SOURCE:MF_PERSONNEL’
cont> filename ’MF_PERSONNEL’
cont>
cont> commit every 10 rows
cont>
cont> create storage area DEPARTMENTS
cont> filename ’DEPARTMENTS’
cont> page format is mixed
cont> snapshot filename ’DEPARTMENTS’
cont> create storage area EMPIDS_LOW
cont> filename ’EMPIDS_LOW’
cont> page format is mixed
cont> snapshot filename ’EMPIDS_LOW’
cont> create storage area EMPIDS_MID
cont> filename ’EMPIDS_MID’
cont> page format is mixed
cont> snapshot filename ’EMPIDS_MID’
cont> create storage area EMPIDS_OVER
cont> filename ’EMPIDS_OVER’
cont> page format is mixed
cont> snapshot filename ’EMPIDS_OVER’
. . .
cont> ; ! end of import
Definition of STORAGE AREA RDB$SYSTEM overridden
Definition of STORAGE AREA MF_PERS_SEGSTR overridden
Definition of STORAGE AREA EMPIDS_LOW overridden
Definition of STORAGE AREA EMPIDS_MID overridden
Definition of STORAGE AREA EMPIDS_OVER overridden
Definition of STORAGE AREA DEPARTMENTS overridden
Definition of STORAGE AREA SALARY_HISTORY overridden
Definition of STORAGE AREA JOBS overridden
Definition of STORAGE AREA EMP_INFO overridden
COMMIT EVERY ignored for table EMPLOYEES due to PLACEMENT VIA INDEX processing
COMMIT EVERY ignored for table JOB_HISTORY due to PLACEMENT VIA INDEX processing
SQL>

Note

If the table being imported includes a storage map with the
"PLACEMENT VIA INDEX" clause, then the COMMIT EVERY clause is
ignored for that table. This restriction will be removed in a future release
of Oracle Rdb. A message will be displayed informing the database
administrator of the tables that did not have COMMIT EVERY applied.
See the example in this release note which shows the message reported
for the EMPLOYEES and JOB_HISTORY tables.

2.2.14 Unexpected SQL-F-BADBLOB Reported by SQL IMPORT
Bug 4001638

In prior releases of Oracle Rdb, it was possible to receive the following errors
when importing large tables (multi-million rows) that contained one or more LIST
OF BYTE VARYING columns.

Software Errors Fixed in Oracle Rdb Release 7.1.4.1 2–47

. . .
IMPORTing table LARGE_TABLE
%SQL-F-BADBLOB, unable to import a list
%COSI-F-EXQUOTA, exceeded quota
-SYSTEM-F-EXQUOTA, process quota exceeded
%SQL-F-BADBLOB, unable to import a list
%RDB-E-BAD_SEGSTR_HAND, invalid segmented string handle
%RDB-E-BAD_SEGSTR_HAND, invalid segmented string handle
. . .
IMPORTing table LARGE_TABLE
%SQL-F-BADBLOB, unable to import a list
%COSI-F-UNEXPERR, unexpected system error
-SYSTEM-F-ILLPAGCNT, illegal page count parameter
%SQL-F-BADBLOB, unable to import a list
%RDB-E-BAD_SEGSTR_HAND, invalid segmented string handle
%RDB-E-BAD_SEGSTR_HAND, invalid segmented string handle

This error occurs due to the growth of a data structure that is sized to contain
references to all created LIST OF BYTE VARYING columns. This data structure
is used to provide the full generality of the LIST cursor model, however, during
IMPORT this functionality is never used.

This problem has been corrected in Oracle Rdb Release 7.1.4.1. Oracle Rdb now
releases this data structure after the row INSERT during an IMPORT operation
to prevent this error and also reduce page faulting during a successful IMPORT.

A possible workaround is to define the logical name RDMS$BIND_SEGMENTED_
STRING_COUNT to a value that is calculated using this formula: row-count *
list-columns + 100. The data structure is normally created small and grows as
more LIST OF BYTE VARYING data is inserted. This logical name allows the
structure to be pre-created and therefore use less virtual memory. However, this
pre-allocated size might still exhaust the page file quota for the process.

2.3 RDO and RDML Errors Fixed
2.3.1 Unexpected NOT_LARDY Following LOCK_CONFLICT Exception

Bug 2274845

In prior releases of Oracle Rdb, when using the RDO or RDBPRE interfaces,
it was possible to receive a RDMS-F-NOT_LARDY after a RDB-F-LOCK_
CONFLICT occurred. This error would repeat for all access to the table which
caused the LOCK_CONFLICT error. A ROLLBACK or COMMIT was required to
clear this error state.

The following example shows this behavior.

INVOKE DATABASE FILENAME TEST_DATABAS

START_TRANSACTION READ_WRITE CONCURRENCY NOWAIT

FOR CLI IN CLI_DNI WITH CLI.DNI_CLI = ’DNI37’
PRINT CLI.COD_IDI,CLI.FE_ULT_CON
MODIFY CLI USING
CLI.COD_IDI=’CAS’

END_MODIFY
END_FOR
%RDB-E-LOCK_CONFLICT, request failed due to locked resource
-RDMS-F-LCKCNFLCT, lock conflict on logical area 57

2–48 Software Errors Fixed in Oracle Rdb Release 7.1.4.1

FOR CLI IN CLI_DNI WITH CLI.DNI_CLI = ’DNI37’
PRINT CLI.COD_IDI,CLI.FE_ULT_CON
MODIFY CLI
USING CLI.COD_IDI=’CAS’

END_MODIFY
END_FOR
%RDMS-F-NOT_LARDY, area for 57:1257:4 not in proper ready mode

This problem has been corrected in Oracle Rdb Release 7.1.4.1.

2.4 RMU Errors Fixed
2.4.1 RMU Extract Might Extract Incomplete Routine Definition

Bug 4142629

In Oracle Rdb Release 7.1.3 and 7.1.4, RMU Extract could possibly extract stored
procedures and functions incorrectly. This occurred when the original definition
included a quoted string (such as in the COMMENT IS clause) that started in the
first column of the source. The result was that the first statement in the routine
would not be extracted.

A workaround is to start all string literals in the routine header after the first
column.

This problem has been corrected in Oracle Rdb Release 7.1.4.1.

2.4.2 Unexpected ACCVIO and BUGCHECK from RMU Extract
Bug 4205822

In prior versions of Oracle Rdb, attempts to use RMU Extract to format a view,
trigger or constraint definition that contained a dbkey literal (for example _
DBKEY’-1:-1:-1’) would fail with errors similar to those shown below.

$ rmu/extract/item=view/option=(filename_only,noheader,match=myv%) sql$database
set verify;
set language ENGLISH;
set default date format ’SQL92’;
set quoting rules ’SQL92’;
set date format DATE 001, TIME 001;
attach ’filename MF_PERSONNEL’;
create view MYV

(JRN,
FMUB) as

%SYSTEM-F-ACCVIO, access violation, reason mask=00,
virtual address=0000000000000000, PC=FFFFFFFF81096B64, PS=0000001B
%RMU-F-FATALOSI, Fatal error from the Operating System Interface.
%RMU-I-BUGCHKDMP, generating bugcheck dump file USER2:[TESTER]RMUEXTBUGCHK.DMP;
%RMU-F-FTL_RMU, Fatal error for RMU operation at 26-FEB-2005 03:31:09.78

This problem has been corrected in Oracle Rdb Release 7.1.4.1. The following
example shows the corrected output from RMU Extract. Please note that SQL
converts _ROWID into _DBKEY literals so that this is what will be extracted by
RMU.

Software Errors Fixed in Oracle Rdb Release 7.1.4.1 2–49

$ rmu/extract/item=view/option=(filename_only,noheader,match=myv%) sql$database
set verify;
set language ENGLISH;
set default date format ’SQL92’;
set quoting rules ’SQL92’;
set date format DATE 001, TIME 001;
attach ’filename MF_PERSONNEL’;
create view MYV

(JRN,
FMUB) as
(select

case C1.DBKEY
when _DBKEY’-1:-1:-1’ then ’D’
else ’I’

end,
C1.MY_UB

from MYONE C1);

commit work;

2.4.3 RMU Load Did Not Handle UNSPECIFIED Character Set in RRD File
Bug 4242736

In prior releases of Oracle Rdb, the special character set UNSPECIFIED was not
correctly supported by RMU Load. This character set informs Rdb that this data
can be assigned to and from a character string of any other character set. It is
the default character set for the USER, CURRENT_USER, SESSION_USER and
SYSTEM_USER builtin functions to allow assignment in any database.

The following example shows the error previously reported by RMU when it
checks for compatible character sets between the source data file and the target
column.

$ RMU /LOAD/RECORD_DEFINITION=(FILE=1.RRD,FORMAT=DELIMITED_TEXT,NULL="*") -
/TRANSACTION_TYPE=EXCLUSIVE/BUFFERS=400 MF_PERSONNEL DUMMY_COPY DUMMY.UNL
DEFINE FIELD F1 DATATYPE IS TEXT SIZE IS 31 CHARACTERS CHARACTER SET IS
UNSPECIFIED.

DEFINE RECORD DUMMY.
F1 .

END DUMMY RECORD.
%RMU-F-FLDMUSMAT, Specified fields must match in number and datatype with the
unloaded data
%RMU-I-DATRECSTO, 0 data records stored.
%RMU-F-FTL_LOAD, Fatal error for LOAD operation at 16-MAR-2005 14:54:20.21

This problem has been corrected in Oracle Rdb Release 7.1.4.1. This problem
has been corrected so that RMU Load allows assignment from this data to any
character column.

2.4.4 RMU/CONVERT Ignored Storage Maps Defined for Optional System
Tables

Bug 4274119

RMU/CONVERT did not check to see if storage maps were defined for optional
system tables. This caused an access violation since an invalid logical area
ID of zero was retrieved from the system table RDB$RELATIONS record for
the optional table when the correct logical area ID was defined in the storage
map. Also, it was assumed that optional system tables were stored compressed
when the storage map could specify that compression was disabled. In addition,
optional system tables with storage maps were not converted if the record format
had changed and therefore were not put in a new logical area by RMU/CONVERT.

2–50 Software Errors Fixed in Oracle Rdb Release 7.1.4.1

These problems have been fixed. Note that these problems only happened for
optional system tables that used storage maps.

The following example shows that an access violation occurred because a storage
map was defined for the optional system table RDB$WORKLOAD. This caused
RMU/CONVERT to use an invalid logical area ID of zero.

RYEROX>RMU/CONVERT TEST_DB.RDB
%RMU-I-RMUTXT_000, Executing RMU for Oracle Rdb V7.1-401
Are you satisfied with your backup of DEVICE:[DIRECTORY]TEST_DB.RDB;1
and your backup of any associated .aij files [N]? y
%RMU-I-LOGCONVRT, database root converted to current structure level
%RMU-S-CVTDBSUC, database DEVICE:[DIRECTORY]TEST_DB.RDB;1
successfully converted from version V7.0 to V7.1
%SYSTEM-F-ACCVIO, access violation, reason mask=00, virtual address=
0000000000000168, PC=00000000003D5DA0, PS=0000001B
%RMU-F-FATALOSI, Fatal error from the Operating System Interface.
%RMU-I-BUGCHKDMP, generating bugcheck dump file
DEVICE:[DIRECTORY]RMUBUGCHK.DMP;
%RMU-F-FTL_CNV, Fatal error for CONVERT operation at 22-APR-2005 10:11:57.83

As a workaround, do not define storage maps for optional system tables.

This problem has been corrected in Oracle Rdb Release 7.1.4.1.

2.4.5 RMU /UNLOAD From Remote Database Specification
Previously, the RMU /UNLOAD command to unload records from a database
table did not allow the database specification to include a remote file specification.
A RMU-F-NONODE fatal error would be returned when attempting to use a
remote database specification, as in the following example.

$ DEFINE DB$ REMNOD::DUA0:[DB]DB.RDB
$ RMU/UNLOAD DB$ C1 C1
%RMU-W-BADDBNAME, can’t find database root REMNOD::DUA0:[DB]DB.RDB;1
-RMU-F-NONODE, no node name is allowed in the file specification
%RMU-F-CANTOPNROO, cannot open root file "REMNOD::DUA0:[DB]DB.RDB;1"
%RMU-F-FTL_UNL, Fatal error for UNLOAD operation at 13-MAY-2005 02:18:26.61

This problem has been corrected in Oracle Rdb Release 7.1.4.1. The remote node
operation is now allowed. Note, however, that the database root file may be
accessed by both FAL and the Rdb database server (because not all of the RMU
operations are strictly database user attaches).

2.4.6 RMU/SHOW AFTER/BACKUP May Stall When AIJs Are Full
Bug 4347617

In previous releases of Oracle Rdb, when using multiple circular journals which
have a state of Full, the RMU/SHOW AFTER/BACKUP command may stall on
"waiting for AIJ journal lock 0 (PW)".

This problem has been corrected in Oracle Rdb Release 7.1.4.1.

2.4.7 Problem with LITERAL Character Set and Embedded Quotes in RMU
EXTRACT

Bug 4469731

In prior releases of Oracle Rdb, it was possible that RMU/EXTRACT might
generate incorrect code for the session LITERAL character set definition if the
database had a default character set other than DEC_MCS.

Software Errors Fixed in Oracle Rdb Release 7.1.4.1 2–51

$ rmu/extract/item=(tables) test/out=test.sql
$ sql @test.sql;
SQL> set language ENGLISH;
SQL> set default date format ’SQL92’;
SQL> set quoting rules ’SQL92’;
SQL> set date format DATE 001, TIME 001;
SQL> attach ’filename device:[directory]TEST.RDB’;
SQL> set default character set ’DEC_HANYU’;
SQL> set literals character set ’DEC_HANYU’;
%SQL-I-SPELLCORR, identifier LITERALS replaced with LITERAL

In addition, if the database default character was not DEC_MCS, embedded
single quotation marks were not correctly doubled in object comments.
. . .
SQL> create table T (
cont> F
cont> INTEGER)
cont> comment is
cont> ’This relation will be used in testing ’store’ statments’;

’This relation will be used in testing ’store’ statments’;
^

%SQL-W-LOOK_FOR_STT, Syntax error, looking for:
%SQL-W-LOOK_FOR_CON, /, ENABLE, STORAGE, LOGGING, COMMENT,
DISABLE, PCTFREE, PCTUSED, INITRANS, MAXTRANS,
%SQL-W-LOOK_FOR_CON, NOLOGGING, TABLESPACE, ;,
%SQL-F-LOOK_FOR_FIN, found STORE instead
SQL>

These problems have been corrected in Oracle Rdb Release 7.1.4.1.

2.5 LogMiner Errors Fixed
2.5.1 Incorrect Elimination of AIJ When Using RMU /UNLOAD

/AFTER_JOURNAL /ORDER_AIJ_FILES /RESTART
Bug 4121598

In previous versions of Oracle Rdb, it was possible for the specified input after-
image journal file to be skipped when using the /RESTART and /ORDER_AIJ_
FILES qualifiers and only a single input AIJ file. The single after-image journal
file would be incorrectly eliminated from processing in this case.

This problem has been corrected in Oracle Rdb Release 7.1.4.1. The after-image
journal file will not be eliminated when using the /RESTART and /ORDER_AIJ_
FILES qualifiers and only a single input AIJ file.

2.5.2 RMU /UNLOAD /AFTER_JOURNAL /[NO]SYMBOLS
Previously, it was possible for a large number of DCL symbols to be created
by the RMU /UNLOAD /AFTER_JOURNAL command. If enough tables were
being unloaded, the CLI symbol table space could become exhausted. The error
message "LIB-F-INSCLIMEM, insufficient CLI memory" would be returned in
this case.

As a possible workaround, increasing the system parameter CLISYMTBL will
provide more space for the CLI symbol table.

This problem has been corrected in Oracle Rdb Release 7.1.4.1. A qualifier
‘‘/[NO]SYMBOLS’’ has been added to the RMU /UNLOAD /AFTER_JOURNAL
command. The default is ‘‘/SYMBOLS’’ to cause the symbols to be created.
Specifying ‘‘/NOSYMBOLS’’ prevents the symbols being created.

2–52 Software Errors Fixed in Oracle Rdb Release 7.1.4.1

2.5.3 RMU /UNLOAD /AFTER_JOURNAL Incorrect Settings in Null Bit Vector
With some combinations of table definition modifications with adding and
removing fields, it was possible for a table’s maximum null bit vector length to
be incorrectly calculated by the Oracle Rdb LogMiner(tm). The incorrect length
would be used internally by the RMU /UNLOAD /AFTER_JOURNAL command
and could result in an incorrect null bit vector content being generated for the
output stream.

As a possible workaround, unloading the table data from the database, dropping
and recreating the table and then reloading the content would cause the table’s
maximum field identification to be reset and the RMU /UNLOAD /AFTER_
JOURNAL command would then work correctly.

This problem has been corrected in Oracle Rdb Release 7.1.4.1. The RMU
/UNLOAD /AFTER_JOURNAL command now correctly determines the maximum
field ID and the null bit vector length.

2.5.4 RMU /UNLOAD /AFTER_JOURNAL Field Order Clarification
Unlike SQL and RMU /UNLOAD, the Oracle Rdb LogMiner (tm) RMU /UNLOAD
/AFTER_JOURNAL command outputs fields in the database on-disk field order.
This difference can become apparant when a table definition has been modified.
For example, when adding a new column to appear in a positon other than at the
end of the record.

The following example shows one way that the Oracle Rdb LogMiner (tm) RMU
/UNLOAD /AFTER_JOURNAL command outputs fields in the database on-disk
field order.

$!
$ SQL$

CREATE DATA FILE FOO LOGMINER SUPPORT ENA;

-- Create table then insert another column between COL1 & COL2.

CREATE TABLE T1 (COL1 INT, COL2 INT);
ALTER TABLE T1 ADD COLUMN COL3 INT BEFORE COLUMN COL2;
SHOW TABLE (COLUMN) T1;

Information for table T1

Columns for table T1:
Column Name Data Type Domain
----------- --------- ------
COL1 INTEGER
COL3 INTEGER
COL2 INTEGER

COMMIT;

Software Errors Fixed in Oracle Rdb Release 7.1.4.1 2–53

DISCONNECT ALL;
ALTER DATA FILE FOO JOU ENA ADD JOU J1 FILE J1;
EXIT;

$!
$ RMU/BACKUP/NOLOG FOO NLA0:FOO
$ RMU/BACKUP/AFTER/NOLOG FOO NLA0:B1
$!
$ SQL$

ATTACH ’FILE FOO’;
INSERT INTO T1 VALUES (NULL,2,3); -- COL1=NULL, COL3=2, COL2=3

1 row inserted
INSERT INTO T1 VALUES (1,NULL,3); -- COL1=1, COL3=NULL, COL2=3

1 row inserted
INSERT INTO T1 VALUES (1,2,NULL); -- COL1=1, COL3=2, COL2=NULL

1 row inserted
COMMIT;
SELECT * FROM T1; -- Show data content

COL1 COL3 COL2
NULL 2 3

1 NULL 3
1 2 NULL

3 rows selected
EXIT;

$!
$ RMU/BACKUP/AFTER/NOLOG FOO B1
$!
$ RMU/UNL/RECORD=FILE=T1.RRD1 FOO T1 NLA0:T1
%RMU-I-DATRECUNL, 3 data records unloaded.
$ RMU/UNL/AFTER/NOLOG/FORMAT=DUMP FOO B1 -

/TABLE=(NAME=T1,OUTPUT=T1.DAT,RECORD=T1.RRD2)
$!
$ SEARCH T1.RRD1 COL ! Show field order - RMU/UNLOAD
DEFINE FIELD COL1 DATATYPE IS SIGNED LONGWORD.
DEFINE FIELD COL3 DATATYPE IS SIGNED LONGWORD.
DEFINE FIELD COL2 DATATYPE IS SIGNED LONGWORD.

COL1 .
COL3 .
COL2 .

$ SEARCH T1.RRD2 COL ! Show field order - RMU/UNLOAD/AFTER_JOURNAL
DEFINE FIELD COL1 DATATYPE IS SIGNED LONGWORD.
DEFINE FIELD COL2 DATATYPE IS SIGNED LONGWORD.
DEFINE FIELD COL3 DATATYPE IS SIGNED LONGWORD.

COL1.
COL2.
COL3.

$ SEARCH T1.DAT RDB$LM_RELATION_NAME, COL ! Show data content
RDB$LM_RELATION_NAME : T1
COL1 : NULL
COL2 : 3
COL3 : 2
RDB$LM_RELATION_NAME : T1
COL1 : 1
COL2 : 3
COL3 : NULL
RDB$LM_RELATION_NAME : T1
COL1 : 1
COL2 : NULL
COL3 : 2
$!

2–54 Software Errors Fixed in Oracle Rdb Release 7.1.4.1

2.6 Row Cache Errors Fixed
2.6.1 RMU /CLOSE /ABORT=DELPRC /WAIT Hang

Bug 4304166

Starting with Oracle Rdb V7.1, it is possible that when using the Row Cache
feature, closing a database with the /ABORT=DELPRC and /WAIT qualifiers
may hang. The problem results in the database recovery processes and the
record cache server process becoming deadlocked. To actually close the database
may require manual intervention to explicitly STOP/ID the database recovery
processes.

With this combination of command line qualifiers, the Oracle Rdb monitor
process was incorrectly issuing a $DELPRC to the record cache server process.
The /ABORT=DELPRC and /ABORT=FORCEX qualifiers are intended to apply
only to database user processes and not to database servers when /WAIT is not
specified.

This problem has been corrected in Oracle Rdb Release 7.1.4.1. The Oracle Rdb
monitor process no longer attempts to issue a $DELPRC to the record cache
server process when /WAIT is specified.

2.6.2 Long Running Transaction Hangs After RMU/CHECKPOINT
Bug 4290880

When row caching was enabled, after an RMU/CHECKPOINT command was
issued, it was possible for long running update transactions to hang waiting
for the global checkpoint lock. The RMU/SHOW STATISTICS ‘‘Stall Messages’’
screen would show output similar to the following:

Process.ID Since...... T Stall.reason.............................Lock.ID.
2360128C:2 05:42:54.38 W waiting for global checkpoint (CR) 1B00783D
23601292:1u 05:42:54.39 - waiting for RCS synch. request 1:23601291 (EX)
23601291:1s 05:42:54.72 - waiting for record 97:12875:0 (PR) 5600322C
23601291:1s 05:42:54.72 - waiting for record 97:12875:0 (PR) 5600322C

This problem would occur because under the old checkpointing mechanisms a
process had to obtain the global checkpoint lock prior to making any further
updates to the database. Thus a long running update transaction would stall
waiting for the RMU process to release the global checkpoint lock. The RMU
process would not release the global checkpoint lock until the Row Cache
Server (RCS) process completed its checkpoint. The RCS could not complete its
checkpoint until the long running transaction released its row locks. Thus all
processes would stall in a deadlock.

This problem has been resolved by changing the checkpoint mechanism to use an
asynchronous lock request to obtain the global checkpoint lock. That is, processes
no longer stall waiting to obtain the lock but instead queue a lock request and
then continue processing. This prevents processes from stalling for the global
checkpoint lock.

This problem can be avoided by not using the RMU/CHECKPOINT command.
If a checkpoint timeout interval is declared for the database, then forcing
checkpoints should not be necessary. The ‘‘CHECKPOINT TIMED EVERY <n>
SECONDS’’ clause can be used to enable checkpoint timers. This problem can
also be avoided by disabling row cache.

This problem has been corrected in Oracle Rdb Release 7.1.4.1.

Software Errors Fixed in Oracle Rdb Release 7.1.4.1 2–55

2.7 Hot Standby Errors Fixed
2.7.1 Excessive CPU Consumed by LRS Process

Bug 4268610

When using the Hot Standby feature, the AIJ Log Recovery Server (LRS) process
would sometimes consume inordinate amounts of CPU. This would especially be
true when the following conditions were true:

• Many short duration transactions were being generated by the application.

• Many journal slots were allocated in the database.

• The current journal sequence number was relatively large, for example, in the
tens of thousands.

When the above conditions were true, it exposed a problem in the recovery code
statistics collection. The recovery code was attempting to determine how many
blocks of journal were spanned in each committed transaction. However, the
recovery code did not record the journal starting point for the transaction, thus
it would appear that the transaction started in journal sequence number 0. The
statistics code would then first attempt to find journal sequence 0. When it didn’t
find sequence 0 it would then try to find sequence 1 so that it could approximate
the number of blocks in the transaction. That journal would not be found so it
would continue searching for journals until it tried all possible journal sequence
numbers up to the current journal. This could consume huge amounts of CPU
time.

There is no workaround for this problem.

This problem has been corrected in Oracle Rdb Release 7.1.4.1. The recovery code
will no longer attempt to gather statistics on the number of journal blocks per
transaction since the number is not useful in the context of database recovery.

2.7.2 LRS Bugchecks in DIOLAREA$SCAN_ABM_CHAIN
Bug 4429420

The Hot Standby Log Recovery Server (LRS) process could fail with a bugcheck
exception similar to the following when replication is first started for a restored
standby database.

***** Exception at 00225AC4 : DIOLAREA$SCAN_ABM_CHAIN + 000003E4
%COSI-F-BUGCHECK, internal consistency failure

This problem would occur when the current journals for the master database
contained entries for a DROP TABLE or DROP INDEX operation, but the
database backup used to create the standby database did not contain the table or
index that was dropped. That is, the database backup was done after the table or
index were dropped.

This problem can be demonstrated with the following sequence of commands:

2–56 Software Errors Fixed in Oracle Rdb Release 7.1.4.1

$! Create master database.
$
$ SQL$
CREATE DATABASE FILENAME TEST_MASTER
CREATE STORAGE AREA RDB$SYSTEM FILENAME TEST_MASTER;

DISCONNECT ALL;
ALTER DATABASE FILENAME TEST_MASTER RESERVE 2 JOURNALS
OPEN IS MANUAL;

%RDMS-W-DOFULLBCK, full database backup should be done to ensure future recovery
ALTER DATABASE FILENAME TEST_MASTER JOURNAL IS ENABLED
(FAST COMMIT IS ENABLED,
LOG SERVER IS AUTOMATIC)
ADD JOURNAL AIJ_1 FILENAME ’SYS$DISK:[]TEST_MASTER_JOURNAL1’
ADD JOURNAL AIJ_2 FILENAME ’SYS$DISK:[]TEST_MASTER_JOURNAL2’
ADD JOURNAL AIJ_3 FILENAME ’SYS$DISK:[]TEST_MASTER_JOURNAL3’;

%RDMS-W-DOFULLBCK, full database backup should be done to ensure future recovery
EXIT;
$
$ RMU/OPEN TEST_MASTER
$
$! Create a table
$
$ SQL$
ATTACH ’FILENAME TEST_MASTER’;
CREATE TABLE T1 (C1 INT);
INSERT INTO T1 VALUES (1);
1 row inserted
COMMIT;
EXIT;
$
$! Dispose of the journal entries reflecting the CREATE TABLE.
$
$ RMU/BACKUP/AFTER/NOLOG TEST_MASTER NL:
%RMU-W-DATACMIT, unjournaled changes made; database may not be recoverable
$
$! Drop the table. The journal will contain the DROP TABLE but will not
$! contain the original CREATE TABLE.
$
$ SQL$
ATTACH ’FILENAME TEST_MASTER’;
DROP TABLE T1;
COMMIT;
EXIT;
$
$! Now that the table is gone, backup the database and use the backup to
$! create the standby database. The standby database will not contain an
$! ABM page for the table that was CREATEd/DROPped, but the journal will
$! contain the DROP TABLE entries. The LRS will process the DROP TABLE
$! journal entries for the non-existent table.
$
$ RMU/BACKUP/NOLOG/ONLINE TEST_MASTER TEST_MASTER
$ RMU/SHOW AFTER_JOURNAL/OUTPUT=TEST_AIJ.OPT TEST_MASTER
$ RMU/RESTORE/NOLOG/NOCDD/NEW/DIR=SYS$DISK:[]-

/ROOT=SYS$DISK:[]TEST_STANDBY -
/AIJ_OPT=TEST_AIJ.OPT TEST_MASTER

JOURNAL IS ENABLED -
RESERVE 3 -
ALLOCATION IS 512 -
EXTENT IS 512 -
OVERWRITE IS DISABLED -
SHUTDOWN_TIMEOUT IS 60 -
NOTIFY IS DISABLED -
BACKUPS ARE MANUAL -
CACHE IS DISABLED

ADD JOURNAL AIJ_1 -

Software Errors Fixed in Oracle Rdb Release 7.1.4.1 2–57

! FILE SYS$DISK:[]TEST_MASTER_JOURNAL1.AIJ;1
FILE SYS$DISK:[]TEST_MASTER_JOURNAL1

ADD JOURNAL AIJ_2 -
! FILE SYS$DISK:[]TEST_MASTER_JOURNAL2.AIJ;1

FILE SYS$DISK:[]TEST_MASTER_JOURNAL2
ADD JOURNAL AIJ_3 -
! FILE SYS$DISK:[]TEST_MASTER_JOURNAL3.AIJ;1

FILE SYS$DISK:[]TEST_MASTER_JOURNAL3
$ RMU/OPEN TEST_STANDBY
$ RMU/REPLICATE AFTER_JOURNAL START TEST_STANDBY -

/MASTER_ROOT=TEST_MASTER -
/OUTPUT=TEST_LRS.LOG

%RMU-I-HOTOFFLINE, standby database opened for exclusive access
$
$! Start replication. The LRS will attempt to apply the REL_CLUMP entry.
$! Part of processing the REL_CLUMP is to update the ABM pages, but they
$! don’t exist. As reported in BUG 4429420, the LRS would bugcheck at
$! DIOLAREA$SCAN_ABM_CHAIN + 000003E4. In this test the following REPLICATE
$! START command would return an RDMS-F-TIMEOUT error when the LRS crashed.
$! The LCS timed out waiting for the LRS to respond.
$
$ RMU/REPLICATE AFTER_JOURNAL START TEST_MASTER /STANDBY_ROOT=TEST_STANDBY
%RDMS-F-TIMEOUT, timeout on

This problem can be avoided by backing up the journals and the database in
sequence without doing any intervening metadata operations.

This problem has been corrected in Oracle Rdb Release 7.1.4.1.

2–58 Software Errors Fixed in Oracle Rdb Release 7.1.4.1

3
Enhancements Provided in Oracle Rdb Release

7.1.4.1

3.1 Enhancements Provided in Oracle Rdb Release 7.1.4.1
3.1.1 Support Added for ANSI C Comments

For several years, the ANSI C standard has included the "//" style comment in
addition to the traditional "/* */" style comment. Until now, SQL$PRE/CC has
only supported the later style. Support for the "//" style comment has been added.

The following example shows comments in the old and in the newly supported
style.

/*
* Traditional C style comments
*/
i0 += 1; /* add one to i0 */

//
// Comments using the // style
//
i0 += 1; // add one to i0

3.1.2 New Rdb Character Set GB18030
Oracle Rdb has introduced a new Chinese character set, GB18030, which is
defined by the GB18030-2000 standard as used by the People’s Republic of
China. GB18030 encodes characters in sequences of one, two, or four octets. The
following are valid octet sequences:

§ Single-octet: %X’00’-%X’7F ’
§ Two-octet: %X’81’-%X’FE’ + %X’40-%X’7E’ %X’80-%X’FE’;
§ Four-octet: %X’81’-%X’FE’ + %X’30’-%X’39’ %X’81’-%X’FE’ +%X’30’-%X’39’

The single-octet characters comply with the standard GB 11383 (iISO 4873:1986).
GB18030 has 1.6 million valid octet sequences.

As GB18030 contains single-octet ASCII characters, it may be used as an
Identifier Character Set.

3.1.3 New GET DIAGNOSTICS Keyword
The following new keyword has been added to GET DIAGNOSTICS:

TRACE_ENABLED

Returns an INTEGER value to indicate if the TRACE flag has been enabled
using the statement SET FLAGS ’TRACE’ or by either of the logical names
RDMS$SET_FLAGS or RDMS$DEBUG_FLAGS. A zero (0) is returned if the
flag is disabled, otherwise a one (1) is returned to indicate that tracing is
enabled.

Enhancements Provided in Oracle Rdb Release 7.1.4.1 3–1

The following example shows usage of this keyword in a compound statement.

SQL> declare :x integer;
SQL> begin
cont> get diagnostics :x = TRACE_ENABLED;
cont> end;
SQL> print :x;

X
0

SQL> set flags ’trace’;
SQL> begin
cont> get diagnostics :x = TRACE_ENABLED;
cont> end;
SQL> print :x;

X
1

3.1.4 Buffer Memory Now Exported/Imported
Bug 4213762

The Recovery Journal setting for Buffer Memory is now EXPORTed/IMPORTed.

An example of the syntax follows:

create data file rujmem;
export data file rujmem into rujmem;
drop data file rujmem;
import data from rujmem file rujmem recovery journal (buffer memory is local);

This feature has been added in Oracle Rdb Release 7.1.4.1.

3.1.5 RMU /UNLOAD Qualifier /REOPEN_COUNT
Bug 4246050

Previously, RMU /UNLOAD would write a single output file for all records in the
table/view being unloaded. In some cases, this single output file would become
difficult to manipulate.

This problem has been corrected in Oracle Rdb Release 7.1.4.1. The ‘‘/REOPEN_
COUNT=n’’ qualifier allows specifying how many records will be written to an
output file. The output file will be re-created (ie, a new version of the file created)
when the record count reaches the specified value. The ‘‘/REOPEN_COUNT=n’’
qualifier is only valid when used with the ‘‘/RECORD_DEFINITION’’ or ‘‘/RMS_
RECORD_DEF’’ qualifiers.

3.1.6 New DEFAULTS Qualifier Added to RMU Extract
This release of Oracle Rdb, Release 7.1.4.1, adds a new DEFAULTS qualifier to
RMU Extract.

• Defaults=defaults-list

This qualifier is used to change the output of the RMU Extract command.
The following defaults can be modified with the Defaults qualifier:

Allocation
NoAllocation

When creating a test database using the RMU Extract generated script,
the allocation from the source database may not be appropriate. The
ALLOCATION keyword can be used to specify an alternate value to be
used by all storage areas, or the NOALLOCATION keyword can be used
to cause the clause to be omitted from the CREATE STORAGE MAP

3–2 Enhancements Provided in Oracle Rdb Release 7.1.4.1

syntax. The default behavior, that is when neither keyword is used, is to
use the allocation recorded in the database for each storage area. See also
the SNAPSHOT_ALLOCATION keyword.

Date_format
NoDate_format

By default, RMU Extract assumes that DATE types will be SQL standard
compliant (that is DATE ANSI) and that the builtin function CURRENT_
TIMESTAMP will return a TIMESTAMP(2) value. If your environment
uses DATE VMS exclusively, then you can modify the default by specifying
the default DATE_FORMAT=VMS. The legal values are described in the
Oracle Rdb SQL Reference Manual in the SET DEFAULT DATE FORMAT
section. The default is DATE_FORMAT=SQL92.

Use NODATE_FORMAT to omit the setting of this session attribute from
the script.

Dialect
NoDialect

For some extracted SQL scripts, the language dialect is required to be
specified. The DIALECT keyword can be used to supply a specified dialect
for the script. The legal values for this option can be found in the Oracle
Rdb SQL Reference Manual in the SET DIALECT section. The default is
NODIALECT.

Language
NoLanguage

RMU Extract uses the process language, that is the translated value of
SYS$LANGUAGE or ENGLISH, for the SET LANGUAGE command.
However, if the script is used on a different system then this language
might not be appropriate. The LANGUAGE keyword can be used to
supply a specified language for the script. Legal language names are
defined by the OpenVMS system logical name table. Examine the logical
name SYS$LANGUAGES for a current set. Use NOLANGUAGE to omit
this command from the script.

Quoting_rules
NoQuoting_rules

The QUOTING_RULES keyword can be used to supply a specified setting
for the script. The legal values for this option can be found in the Oracle
Rdb SQL Reference Manual in the SET QUOTING RULES section. The
default is QUOTING_RULES=SQL92. Please note that RMU Extract
assumes that SQL keywords and names containing non-ASCII character
set values will be quoted.

Snapshot_allocation
NoSnapshot_allocation

When creating a test database from the RMU Extract output, the
snapshot file allocation from the source database may not be appropriate.
The SNAPSHOT_ALLOCATION keyword can be used to specify an
alternate value to be used by all snapshot areas, or the NOALLOCATION
keyword can be used to cause the "snapshot allocation is" clause to be
omitted. The default behavior, that is when neither keyword is used, is to
use the snapshot allocation stored in the database for each snapshot area.
See also the ALLOCATION keyword.

Enhancements Provided in Oracle Rdb Release 7.1.4.1 3–3

3.1.7 New RESTART WITH Clause for ALTER SEQUENCE
This release of Oracle Rdb, 7.1.4.1, includes support for the ALTER SEQUENCE
... RESTART WITH clause. RESTART WITH allows the database administrator
to reset the sequence to a specified value. The value must be within the range
of MINVALUE and MAXVALUE. This command requires exclusive access to the
sequence. Once the ALTER SEQUENCE statement is successfully committed,
applications using the sequence will start with a value based on the restarted
value.

Note

TRUNCATE TABLE for a table with an IDENTITY column implicitly
executed an ALTER SEQUENCE ... RESTART WITH on the sequence.
Specify the MINVALUE if it is an ascending sequence or MAXVALUE if it
is a descending sequence.

The following example shows the new RESTART WITH clause.

SQL> show sequence NEW_EMPLOYEE_ID
NEW_EMPLOYEE_ID

Sequence Id: 1
Initial Value: 472
. . .
SQL>
SQL> alter sequence NEW_EMPLOYEE_ID
cont> restart with 500;
SQL>
SQL> show sequence NEW_EMPLOYEE_ID

NEW_EMPLOYEE_ID
Sequence Id: 1
Initial Value: 500
. . .
SQL>

3.1.8 ALTER VIEW Statement
Description
This statement allows the named view to be modified.

Environment
You can use the ALTER VIEW statement:

• In interactive SQL

• Embedded in host language programs

• As part of a procedure in a SQL module

• In dynamic SQL as a statement to be dynamically executed

3–4 Enhancements Provided in Oracle Rdb Release 7.1.4.1

Format

ALTER VIEW <view-name> AS <select-expr>
<check-option-clause>
COMMENT IS ’text-literal’

/
RENAME TO <new-view-name>
WITH NO CHECK OPTION

select-expr =

select-clause
(select-expr)
TABLE table-ref

select-merge-clause

order-by-clause limit-to-clause

check-option-clause =

WITH CHECK OPTION
CONSTRAINT <check-option-name>

Arguments

• AS

Replaces the view select expression and the definitions of the columns. The
number of expressions in the select list must match the original CREATE
VIEW column list.

• CONSTRAINT check-option-name

Specify a name for the WITH CHECK OPTION constraint. If you omit
the name, SQL creates a name. However, Oracle Rdb recommends that
you always name constraints. If you supply a name for the WITH CHECK
OPTION constraint, the name must be unique in the schema.

The name for the WITH CHECK OPTION constraint is used by the INTEG_
FAIL error message when an INSERT or UPDATE statement violates the
constraint.

• COMMENT IS

Replaces the comment currently defined for the view (if any). The comment
will be displayed by the SHOW VIEW statement in Interactive SQL.

• RENAME TO

Renames the current view. The new view name must not exist as the name of
an existing view, table, sequence or synonym.

• WITH CHECK OPTION

Enhancements Provided in Oracle Rdb Release 7.1.4.1 3–5

A constraint that places restrictions on update operations made to a view.
The check option clause ensures that any rows that are inserted or updated
in a view conform to the definition of the view. Do not specify the WITH
CHECK OPTION clause with views that are read-only. (The Usage Notes
describe which views SQL considers read-only.)

• WITH NO CHECK OPTION

Removes any check option constraint currently defined for the view.

Usage Notes

• You require ALTER privilege on the referenced view.

• The ALTER VIEW statement causes the RDB$LAST_ALTERED column
of the RDB$RELATIONS table for the named view to be updated with the
transaction’s timestamp.

• Neither the column names nor their position may be modified using ALTER
VIEW. Nor can columns be added or dropped for a view. These changes
require both a DROP VIEW and CREATE VIEW statement to replace the
existing definition.

• RENAME TO allows the name of the view to be changed. This clause requires
that synonyms are enabled in the database. Use ALTER DATABASE ...
SYNONYMS ARE ENABLED.

The old name will be used to create a synonym for the new name of this
view. This synonym can be dropped if the name is no longer used by database
definitions or applications.

This clause is equivalent to the RENAME VIEW statement.

• The COMMENT IS clause changes the existing comment on the view. This
clause is equivalent to the COMMENT ON VIEW statement.

• Changes to the column expression may change the column to read-only and
prevent referencing routines, triggers and applications from performing
INSERT and UPDATE operations on those columns. Such changes will be
reported at runtime.

Similarly, if the view select table expression becomes read-only, referencing
queries may fail.

SQL considers as read-only views those with select expressions that:

Use the DISTINCT argument to eliminate duplicate rows from the result
table

Name more than one table or view in the FROM clause

Use a derived table in the FROM clause

Include a statistical function in the select list

Contain a UNION, EXCEPT DISTINCT (MINUS), INTERSECT
DISTINCT, GROUP BY, or HAVING clause

• If the AS clause changes the view to read-only, or includes a LIMIT TO ...
ROWS clause on the main query then the check option constraint is implicitly
removed.

3–6 Enhancements Provided in Oracle Rdb Release 7.1.4.1

Example 3–1 Changing the comment on a view

SQL> show view (comment) current_job
Information for table CURRENT_JOB

SQL> alter view CURRENT_JOB
cont> comment is ’Select the most recent job for the employee’;
SQL> show view (comment) current_job
Information for table CURRENT_JOB

Comment on table CURRENT_JOB:
Select the most recent job for the employee
SQL>

Examples
A comment can be added or changed on a view using the COMMENT IS clause as
shown in this example.

The following view uses a derived table and join to collect the count of employees
in each department. The view is used in several reporting programs used by the
department and company managers.

Enhancements Provided in Oracle Rdb Release 7.1.4.1 3–7

Example 3–2 Changing the columns results of a view definition

SQL> create view DEPARTMENTS_SUMMARY
cont> as
cont> select department_code, d.department_name,
cont> d.manager_id, jh.employee_count
cont> from departments d inner join
cont> (select department_code, count (*)
cont> from job_history
cont> where job_end is null
cont> group by department_code)
cont> as jh (department_code, employee_count)
cont> using (department_code);
SQL>
SQL> show view DEPARTMENTS_SUMMARY;
Information for table DEPARTMENTS_SUMMARY

Columns for view DEPARTMENTS_SUMMARY:
Column Name Data Type Domain
----------- --------- ------
DEPARTMENT_CODE CHAR(4)
DEPARTMENT_NAME CHAR(30)
Missing Value: None
MANAGER_ID CHAR(5)
Missing Value:
EMPLOYEE_COUNT INTEGER
Source:
select department_code, d.department_name,

d.manager_id, jh.employee_count
from departments d inner join

(select department_code, count (*)
from job_history
where job_end is null
group by department_code) as jh (department_code, employee_count)

using (department_code)

SQL>

The database administrator decides to create a column in the DEPARTMENTS
table to hold the count of employees (rather than using a query to gather the
total) and to maintain the value through triggers on EMPLOYEES and JOB_
HISTORY (not shown here). Now the view can be simplified without resorting to
a DROP VIEW and CREATE VIEW. Alter view will preserve the dependencies
on the view from other views, triggers and routines and so minimize the work
required to implement such a change.

SQL> alter table DEPARTMENTS
cont> add column EMPLOYEE_COUNT integer;
SQL>
SQL> alter view DEPARTMENTS_SUMMARY
cont> as
cont> select department_code, d.department_name,
cont> d.manager_id, d.employee_count
cont> from departments d;
SQL>
SQL> show view DEPARTMENTS_SUMMARY;
Information for table DEPARTMENTS_SUMMARY

(continued on next page)

3–8 Enhancements Provided in Oracle Rdb Release 7.1.4.1

Example 3–2 (Cont.) Changing the columns results of a view definition

Columns for view DEPARTMENTS_SUMMARY:
Column Name Data Type Domain
----------- --------- ------
DEPARTMENT_CODE CHAR(4)
Missing Value: None
DEPARTMENT_NAME CHAR(30)
Missing Value: None
MANAGER_ID CHAR(5)
Missing Value:
EMPLOYEE_COUNT INTEGER
Source:
select department_code, d.department_name,

d.manager_id, d.employee_count
from departments d

SQL>

This example shows that a WITH CHECK OPTION constraint restricts the
inserted data to the view’s WHERE clause. Once the constraint is removed, the
INSERT is no longer constrained.

Example 3–3 Changing the WITH CHECK OPTION constraint of a view
definition

SQL> create view TOLIVER_EMPLOYEE
cont> as select * from EMPLOYEES where employee_id = ’00164’
cont> with check option;
SQL> insert into TOLIVER_EMPLOYEE (employee_id) value (’00000’);
%RDB-E-INTEG_FAIL, violation of constraint TOLIVER_EMPLOYEE_CHECKOPT1 caused
operation to fail
-RDB-F-ON_DB, on database DISK1:[DATABASES]MF_PERSONNEL.RDB;1
SQL>
SQL> alter view TOLIVER_EMPLOYEE with no check option;
SQL>
SQL> insert into TOLIVER_EMPLOYEE (employee_id) value (’00000’);
1 row inserted
SQL>

Enhancements Provided in Oracle Rdb Release 7.1.4.1 3–9

4
Documentation Corrections, Additions and

Changes

This chapter provides corrections for documentation errors and omissions.

4.1 Documentation Corrections
4.1.1 Incorrect Example Under RMU Unload Command

Bug 4430799

The Oracle RMU Reference Manual, Version 7.1, contains a misleading example.
Example 14 in the RMU Unload Command describes a mechanism for reloading
AUTOMATIC column data into the database. It should be replaced by this
revised example:

AUTOMATIC columns are evaluated during INSERT and UPDATE operations
for a table; for instance, they may record the timestamp for the last operation.
If the table is being reorganized, it may be necessary to unload the data and
reload it after the storage map and indexes for the table are re-created, yet the
old auditing data must remain the same.

Normally, RMU Unload does not unload columns marked as AUTOMATIC. You
must use the /VIRTUAL_FIELD qualifier with the keyword AUTOMATIC to
request this action.

$ rmu/unload/virtual_fields=(automatic) payroll_db people people.unl

Following the restructure of the database, the data can be reloaded. If the target
columns are also defined as AUTOMATIC, then RMU Load will not write to
those columns, therefore, you must use the /VIRTUAL_FIELD qualifier with the
keyword AUTOMATIC to request this action.

$ rmu/load/virtual_fields=(automatic) payroll_db people people.unl

4.1.2 RDM$BIND_MAX_DBR_COUNT Documentation Clarification
Bugs 1495227 and 3916606

The Rdb7 Guide to Database Performance and Tuning Manual, Volume 2, page
A-18, incorrectly describes the use of the RDM$BIND_MAX_DBR_COUNT logical.

Following is an updated description. Note that the difference in actual behavior
between what is in the existing documentation and software is that the logical
name only controls the number of database recovery processes created at once
during ‘‘node failure’’ recovery (that is, after a system or monitor crash or other
abnormal shutdown) for each database.

Documentation Corrections, Additions and Changes 4–1

When an entire database is abnormally shut down (due, for example, to a system
failure), the database will have to be recovered in a ‘‘node failure’’ recovery mode.
This recovery will be performed by another monitor in the cluster if the database
is opened on another node or will be performed the next time the database is
opened.

The RDM$BIND_MAX_DBR_COUNT logical name and the RDB_BIND_MAX_
DBR_COUNT configuration parameter define the maximum number of database
recovery (DBR) processes to be simultaneously invoked by the database monitor
for each database during a ‘‘node failure’’ recovery.

This logical name and configuration parameter apply only to databases that do
not have global buffers enabled. Databases that utilize global buffers have only
one recovery process started at a time during a ‘‘node failure’’ recovery.

In a node failure recovery situation with the Row Cache feature enabled
(regardless of the global buffer state), the database monitor will start a single
database recovery (DBR) process to recover the Row Cache Server (RCS) process
and all user processes from the oldest active checkpoint in the database.

Per-Database Value

The RDM$BIND_MAX_DBR_COUNT logical name specifies the
maximum number of database recovery processes to run at once for
each database. For example, if there are 10 databases being recovered
and the value for the RDM$BIND_MAX_DBR_COUNT logical name is
8, up to 80 database recovery processes would be started by the monitor
after a node failure.

The RDM$BIND_MAX_DBR_COUNT logical name is translated when the
monitor process opens a database. Databases should be closed and reopened for a
new value of the logical to become effective.

4.1.3 Database Server Process Priority Clarification
By default, the database servers (ABS, ALS, DBR, LCS, LRS, RCS) created by
the Rdb monitor inherit their VMS process scheduling base priority from the Rdb
monitor process. The default priority for the Rdb monitor process is 15.

Individual server priorities can be explicitly controlled via system-wide logical
names as described in Table 4–1.

Table 4–1 Server Process Priority Logical Names

Logical Name Use

RDM$BIND_ABS_PRIORITY Base Priority for the ABS Server process

RDM$BIND_ALS_PRIORITY Base Priority for the ALS Server process

RDM$BIND_DBR_PRIORITY Base Priority for the DBR Server process

RDM$BIND_LCS_PRIORITY Base Priority for the LCS Server process

RDM$BIND_LRS_PRIORITY Base Priority for the LRS Server process

RDM$BIND_RCS_PRIORITY Base Priority for the RCS Server process

When the Hot Standby feature is installed, the RDMAIJSERVER account is
created specifying an account priority of 15. The priority of AIJ server processes
on your system can be restricted with the system-wide logical name RDM$BIND_

4–2 Documentation Corrections, Additions and Changes

AIJSRV_PRIORITY. If this logical name is defined to a value less than 15, an
AIJ server process will adjust its base priority to the value specified when the
AIJ server process starts. Values from 0 to 31 are allowed for RDM$BIND_
AIJSRV_PRIORITY, but the process is not able to raise its priority above the
RDMAIJSERVER account value.

For most applications and systems, Oracle discourages changing the server
process priorities.

4.1.4 Explanation of SQL$INT in a SQL Multiversion Environment and How to
Redefine SQL$INT

Bug 2500594

In an environment running multiple versions of Oracle Rdb, for instance Rdb
V7.0 and Rdb V7.1, there are now several varianted SQL images, such as
SQL$70.EXE and SQL$71.EXE. However, SQL$INT.EXE is not varianted but
acts as a dispatcher using the translation of the logical name RDMS$VERSION_
VARIANT to activate the correct SQL runtime environment. This image is
replaced when a higher version of Oracle Rdb is installed. Thus, using the
example above, when Rdb V7.1 is installed, SQL$INT.EXE will be replaced with
the V7.1 SQL$INT.EXE.

If an application is linked in this environment (using V7.1 SQL$INT) and
the corresponding executable deployed to a system running Oracle Rdb V7.0
multiversion only, the execution of the application may result in the following
error:

%IMGACT-F-SYMVECMIS, shareable image’s symbol vector table mismatch

In order to avoid such a problem, the following alternative is suggested:

In the multiversion environment running both Oracle Rdb V7.0 and Oracle Rdb
V7.1, run Oracle Rdb V7.0 multiversion by running the command procedures
RDB$SETVER.COM 70 and RDB$SETVER RESET. This will set up the
necessary logical names and symbols that establish the Oracle Rdb V7.0
environment.

For example:

$ @SYS$LIBRARY:RDB$SETVER 70

Current PROCESS Oracle Rdb environment is version V7.0-63 (MULTIVERSION)
Current PROCESS SQL environment is version V7.0-63 (MULTIVERSION)
Current PROCESS Rdb/Dispatch environment is version V7.0-63 (MULTIVERSION)

$ @SYS$LIBRARY:RDB$SERVER RESET

Now run SQL and verify that the version is correct:

$ sql$
SQL> show version
Current version of SQL is: Oracle Rdb SQL V7.0-63

Define SQL$INT to point to the varianted SQL$SHR.EXE. Then, create an
options file directing the linker to link with this newly defined SQL$INT. An
example follows:

$ DEFINE SQL$INT SYS$SHARE:SQL$SHR’RDMS$VERSION_VARIANT’.EXE
$ LINK TEST_APPL,SQL$USER/LIB,SYS$INPUT/option
SQL$INT/SHARE
^Z

Documentation Corrections, Additions and Changes 4–3

The executable is now ready to be deployed to the Oracle Rdb V7.0 multiversion
environment and should run successfully.

Please note that with each release of Oracle Rdb, new entry points are added
to the SQL$INT shareable image. This allows the implementation of new
functionality. Therefore, applications linked with SQL$INT from Oracle Rdb V7.1
cannot be run on systems with only Oracle Rdb V7.0 installed. This is because
the shareable image does not contain sufficient entry points.

The workaround presented here allows an application to explicitly link with the
Oracle Rdb V7.0 version of the image. Such applications are upward compatible
and will run on Oracle Rdb V7.0 and Oracle Rdb V7.1. The applications should
be compiled and linked under the lowest version.

In environments where Oracle Rdb V7.1 is installed, this workaround is not
required because the SQL$INT image will dynamically activate the appropriate
SQL$SHRxx image as expected.

4.1.5 Documentation Omitted Several Reserved Words
Bug 2319321

The following keywords are considered reserved words in Oracle Rdb Release 7.1.

• UID

• CURRENT_UID

• SYSTEM_UID

• SESSION_UID

• RAW

• LONG

• DBKEY

• ROWID

• SYSDATE

In particular, any column which has these names will be occluded by the keyword.
i.e. selecting from column UID will be interpreted as referencing the built in
function UID and so return a different result.

The correction to this problem is to enable keyword quoting using SET QUOTING
RULES ’SQL92’ (or ’SQL99’) and enclose the column name in quotations.

In addition, SQL will now generate a warning if these reserved words are used
(unquoted) in CREATE and ALTER operations.

4.1.6 Using Databases from Releases Earlier Than V6.0
Bug 2383967

You cannot convert or restore databases earlier than V6.0 directly to V7.1. The
RMU Convert command for V7.1 supports conversions from V6.0 through V7.0
only. If you have a V3.0 through V5.1 database, you must convert it to at least
V6.0 and then convert it to V7.1. For example, if you have a V4.2 database,
convert it first to at least V6.0, then convert the resulting database to V7.1.

If you attempt to convert a database created prior to V6.0 directly to V7.1, Oracle
RMU generates an error.

4–4 Documentation Corrections, Additions and Changes

4.1.7 New RMU/BACKUP Storage Area Assignment With Thread Pools
This is to clarify how storage areas are assigned to disk and tape devices using
the new RMU/BACKUP THREAD POOL and BACKUP TO MULTIPLE DISK
DEVICES features introduced in Oracle Rdb Release 7.1.

For the case of backup to multiple disk devices using thread pools, the algorithm
used by RMU/BACKUP to assign threads is to calculate the size of each area
as the product of the page length in bytes times the highest page number
used (maximum page number) for that area. The area sizes are then sorted by
descending size and ascending device name. For internal processing reasons, the
system area is placed as the first area in the first thread. Each of the remaining
areas is added to whichever thread has the lowest byte count. In this way, the
calculated area sizes are balanced between the threads.

For tape devices, the same algorithm is used but the areas are partitioned among
writer threads, not disk devices.

The partitioning for backup to multiple disk devices is done by disk device, not
by output thread, because there will typically be more disk devices than output
threads, and an area can not span a device.

4.1.8 RDM$BIND_LOCK_TIMEOUT_INTERVAL Overrides the Database
Parameter

Bug 2203700

When starting a transaction, there are three different values that are used to
determine the lock timeout interval for that transaction. Those values are:

1. The value specified in the SET TRANSACTION statement

2. The value stored in the database as specified in CREATE or ALTER
DATABASE

3. The value of the logical name RDM$BIND_LOCK_TIMEOUT_INTERVAL

The timeout interval for a transaction is the smaller of the value specified in the
SET TRANSACTION statement and the value specified in CREATE DATABASE.
However, if the logical name RDM$BIND_LOCK_TIMEOUT_INTERVAL is
defined, the value of this logical name overrides the value specified in CREATE
DATABASE.

The description of how these three values interact, found in several different
parts of the Rdb documentation set, is incorrect and will be replaced by the
description above.

The lock timeout value in the database can be dynamically modified from the
Locking Dashboard in RMU/SHOW STATISTICS. The Per-Process Locking
Dashboard can be used to dynamically override the logical name RDM$BIND_
LOCK_TIMEOUT_INTERVAL for one or more processes.

4.1.9 New Request Options for RDO, RDBPRE and RDB$INTERPRET
This release note was included in the V70A Release Notes but had gotten dropped
somewhere along the line.

For this release of Rdb, two new keywords have been added to the handle-options
for the DECLARE_STREAM, the START_STREAM (undeclared format) and
FOR loop statements. These changes have been made to RDBPRE, RDO and
RDB$INTERPRET at the request of several RDO customers.

Documentation Corrections, Additions and Changes 4–5

In prior releases, the handle-options could not be specified in interactive RDO or
RDB$INTERPRET. This has changed in Rdb7 but these allowed options will be
limited to MODIFY and PROTECTED keywords. For RDBPRE, all options listed
will be supported. These option names were chosen to be existing keywords to
avoid adding any new keywords to the RDO language.

The altered statements are shown in Example 5-1, Example 5-2 and Example 5-3.

Example 5-1 DECLARE_STREAM Format

DECLARE_STREAM <declared-stream-name>
handle-options

USING rse

Example 5-2 START_STREAM Format

START_STREAM
handle-options

<stream-name> USING rse
on-error

Example 5-3 FOR Format

FOR rse
handle-options on-error

statement END_FOR

Each of these statements references the syntax for the HANDLE-OPTIONS which
has been revised and is shown below.
handle-options =

(REQUEST_HANDLE <variable>)
TRANSACTION_HANDLE <variable>
MODIFY
PROTECTED

,

The following options are available for HANDLE-OPTIONS:

• REQUEST_HANDLE specifies the request handle for this request. This
option is only valid for RDBPRE and RDML applications. It cannot be used
with RDB$INTERPRET, nor interactive RDO.

• TRANSACTION_HANDLE specifies the transaction handle under which
this request executes. This option is only valid for RDBPRE and RDML
applications. It cannot be used with RDB$INTERPRET, nor interactive RDO.

• MODIFY specifies that the application will modify all (or most) records
fetched from the stream or for loop. This option can be used to improve
application performance by avoiding lock promotion from SHARED READ
for the FETCH to PROTECTED WRITE access for the nested MODIFY or
ERASE statement. It can also reduce DEADLOCK occurrence because lock
promotions are avoided.

This option is valid for RDBPRE, RDB$INTERPRET, and interactive RDO.
This option is not currently available for RDML.

4–6 Documentation Corrections, Additions and Changes

For example:

RDO> FOR (MODIFY) E IN EMPLOYEES WITH E.EMPLOYEE_ID = "00164"
cont> MODIFY E USING E.MIDDLE_INITIAL = "M"
cont> END_MODIFY
cont> END_FOR

This FOR loop uses the MODIFY option to indicate that the nested MODIFY
is an unconditional statement and so aggressive locking can be undertaken
during the fetch of the record in the FOR loop.

• PROTECTED specifies that the application may modify records fetched by
this stream by a separate and independent MODIFY statement. Therefore,
this stream should be protected from interference (aka Halloween affect). The
optimizer will select a snapshot of the rows and store them in a temporary
relation for processing, rather than traversing indexes at the time of the
FETCH statement. In some cases this may result in poorer performance
when the temporary relation is large and overflows from virtual memory to a
temporary disk file, but the record stream will be protected from interference.
The programmer is directed to the documentation for the Oracle Rdb logical
names RDMS$BIND_WORK_VM and RDMS$BIND_WORK_FILE.

This option is valid for RDBPRE, RDB$INTERPRET, and interactive RDO.
This option is not currently available for RDML.

The following example creates a record stream in a BASIC program using
Callable RDO:

RDMS_STATUS = RDB$INTERPRET (’INVOKE DATABASE PATHNAME "PERSONNEL"’)

RDMS_STATUS = RDB$INTERPRET (’START_STREAM (PROTECTED) EMP USING ’ + &
’E IN EMPLOYEES’)

RDMS_STATUS = RDB$INTERPRET (’FETCH EMP’)

DML_STRING = ’GET ’ + &
’!VAL = E.EMPLOYEE_ID;’ + &
’!VAL = E.LAST_NAME;’ + &
’!VAL = E.FIRST_NAME’ + &

’END_GET’

RDMS_STATUS = RDB$INTERPRET (DML_STRING, EMP_ID, LAST_NAME, FIRST_NAME)

In this case the FETCH needs to be protected against MODIFY statements
which execute in other parts of the application.

4.2 Address and Phone Number Correction for Documentation
In release 7.0 or earlier documentation, the address and fax phone number listed
on the Send Us Your Comments page are incorrect. The correct information is:

FAX -- 603.897.3825
Oracle Corporation
One Oracle Drive
Nashua, NH 03062-2804
USA

Documentation Corrections, Additions and Changes 4–7

4.3 Online Document Format and Ordering Information
You can view the documentation in Adobe Acrobat format using the Acrobat
Reader, which allows anyone to view, navigate, and print documents in the Adobe
Portable Document Format (PDF). See http://www.adobe.com for information
about obtaining a free copy of Acrobat Reader and for information on supported
platforms.

The Oracle Rdb documentation in Adobe Acrobat format is available on MetaLink:

Top Tech Docs\Oracle Rdb\Documentation\<bookname>

Customers should contact their Oracle representative to purchase printed
documentation.

4.4 New and Changed Features in Oracle Rdb Release 7.1
This section provides information about late-breaking new features or information
that is missing or changed since the Oracle Rdb New and Changed Features for
Oracle Rdb manual was published.

4.4.1 PERSONA is Supported in Oracle SQL/Services
In the "New and Changed Features for Oracle Rdb" Manual under the section
"ALTER DATABASE Statement" is a note stating that impersonation is not
supported in Oracle SQL/Services. This is incorrect. There was a problem in
the first release of Oracle Rdb 7.1 (7.1.0) whereby impersonation through Oracle
SQL/Services failed. This problem is resolved in Oracle Rdb Release 7.1.0.1.

4.4.2 NEXTVAL and CURRVAL Pseudocolumns Can Be Delimited Identifiers
The New and Changed Features for Oracle Rdb manual describes SEQUENCES
but does not mention that the special pseudocolumns NEXTVAL and CURRVAL
can be delimited. All uppercase and lowercase variations of these keywords are
accepted and assumed to be equivalent to these uppercase keywords.

The following example shows that any case is accepted:

SQL> set dialect ’sql92’;
SQL> create sequence dept_id;
SQL> select dept_id.nextval from rdb$database;

1
1 row selected
SQL> select "DEPT_ID".currval from rdb$database;

1
1 row selected
SQL> select "DEPT_ID"."CURRVAL" from rdb$database;

1
1 row selected
SQL> select "DEPT_ID"."nextval" from rdb$database;

2
1 row selected
SQL> select "DEPT_ID"."CuRrVaL" from rdb$database;

2
1 row selected

4–8 Documentation Corrections, Additions and Changes

4.4.3 Only=select_list Qualifier for the RMU Dump After_Journal Command
The Oracle Rdb New and Changed Features for Oracle Rdb manual documents
the First=select_list and Last=select_list qualifiers for the RMU Dump After_
Journal command. Inadvertently missed was the Only=select_list qualifier.

The First, Last, and Only qualifiers have been added because the Start and End
qualifiers are difficult to use since users seldom know, nor can they determine, the
AIJ record number in advance of using the RMU Dump After_Journal command.

The select_list clause of these qualifiers consists of a list of one or more of the
following keywords:

• TSN=tsn

Specifies the first, last, or specific TSN in the AIJ journal using the standard
[n:]m TSN format.

• TID=tid

Specifies the first, last or specific TID in the AIJ journal.

• RECORD=record

Specifies the first or last record in the AIJ journal. This is the same as the
existing Start and End qualifiers (which are still supported, but deprecated).
This keyword cannot be used with the Only qualifier.

• BLOCK=block#

Specifies the first or last block in the AIJ journal. This keyword cannot be
used with the Only qualifier.

• TIME=date_time

Specifies the first or last date/time in the AIJ journal using the standard
date/time format. This keyword cannot be used with the Only qualifier.

The First, Last, and Only qualifiers are optional. You may specify any or none of
them.

The keywords specified for the First qualifier can differ from the keywords
specified for the other qualifiers.

For example, to start the dump from the fifth block of the AIJ journal, you would
use the following command:

RMU/DUMP/AFTER_JOURNAL /FIRST=(BLOCK=5) MF_PERSONNEL.AIJ

To start the dump from block 100 or TSN 52, whichever occurs first, you would
use the following command:

RMU/DUMP/AFTER_JOURNAL /FIRST=(BLOCK=100,TSN=0:52) MF_PERSONNEL.AIJ

When multiple keywords are specified for a qualifier, the first condition being
encountered activates the qualifier. In the preceding example, the dump starts
when either block 100 or TSN 52 is encountered.

Be careful when searching for TSNs or TIDs as they are not ordered in the
AIJ journal. For example, if you want to search for a specific TSN, use the
Only qualifier and not the First and Last qualifiers. For example, assume the
AIJ journal contains records for TSN 150, 170, and 160 (in that order). If you
specify the First=TSN=160 and Last=TSN=160 qualifiers, nothing will be dumped
because TSN 170 will match the Last=TSN=160 criteria.

Documentation Corrections, Additions and Changes 4–9

4.5 Oracle Rdb7 and Oracle CODASYL DBMS Guide to Hot Standby
Databases

This section provides information that is missing from or changed in V7.0 of the
Oracle Rdb7 and Oracle CODASYL DBMS Guide to Hot Standby Databases.

4.5.1 Restrictions Lifted on After-Image Journal Files
The Hot Standby software has been enhanced regarding how it handles after-
image journal files. Section 4.2.4 in the Oracle Rdb and Oracle CODASYL DBMS
Guide to Hot Standby Databases states the following information:

If an after-image journal switchover operation is suspended when
replication operations are occurring, you must back up one or more of
the modified after-image journals to add a new journal file.

This restriction has been removed. Now, you can add journal files or use the
emergency AIJ feature of Oracle Rdb release 7.0 to automatically add a new
journal file. Note the following distinctions between adding an AIJ file and
adding an emergency AIJ file:

• You can add an AIJ file to the master database and it will be replicated on the
standby database. If replication operations are active, the AIJ file is created
on the standby database immediately. If replication operations are not active,
the AIJ file is created on the standby database when replication operations
are restarted.

• You can add emergency AIJ files anytime. If replication operations are active,
the emergency AIJ file is created on the standby database immediately.
However, because emergency AIJ files are not journaled, starting replication
after you create an emergency AIJ will fail. You cannot start replication
operations because the Hot Standby software detects a mismatch in the
number of after-image journal files on the master compared to the standby
database.

If an emergency AIJ file is created on the master database when replication
operations are not active, you must perform a master database backup
and then restore the backup on the standby database. Otherwise, an
AIJSIGNATURE error results.

4.5.2 Changes to RMU Replicate After_Journal ... Buffer Command
The behavior of the RMU Replicate After_Journal ... Buffers command has been
changed. The Buffers qualifier may be used with either the Configure option or
the Start option.

When using local buffers, the AIJ Log Roll-forward Server will use a minimum
of 4096 buffers. The value provided to the Buffers qualifier will be accepted but
ignored if it is less than 4096. In addition, further parameters will be checked
and the number of buffers may be increased if the resulting calculations are
greater than the number of buffers specified by the Buffers qualifier. If the
database is configured to use more than 4096 AIJ Request Blocks (ARBs), then
the number of buffers may be increased to the number of ARBs configured for the
database. The LRS ensures that there are at least 10 buffers for every possible
storage area in the database. Thus if the total number of storage areas (both
used and reserved) multiplied by 10 results in a greater number of buffers, then
that number will be used.

4–10 Documentation Corrections, Additions and Changes

When global buffers are used, the number of buffers used by the AIJ Log
Roll-forward Server is determined as follows:

• If the Buffers qualifier is omitted and the Online qualifier is specified, then
the number of buffers will default to the previously configured value, if any,
or 256, whichever is larger.

• If the Buffers qualifier is omitted and the Online qualifier is not specified or
the Noonline qualifier is specified, then the number of buffers will default to
the maximum number of global buffers allowed per user ("USER LIMIT"), or
256, whichever is larger.

• If the Buffers qualifier is specified then that value must be at least 256, and
it may not be greater than the maximum number of global buffers allowed
per user ("USER LIMIT").

The Buffer qualifier now enforces a minimum of 256 buffers for the AIJ Log
Roll-forward Server. The maximum number of buffers allowed is still 524288
buffers.

4.5.3 Unnecessary Command in the Hot Standby Documentation
There is an unnecessary command documented in the Oracle Rdb and Oracle
CODASYL DBMS Guide to Hot Standby Databases manual. The documentation
(in Section 2.12 "Step 10: Specify the Network Transport Protocol") says that to
use TCP/IP as the network protocol, you must issue the following commands:

$ CONFIG UCX AIJSERVER OBJECT
$ UCX SET SERVICE RDMAIJSRV
/PORT=n
/USER_NAME=RDMAIJSERVER
/PROCESS_NAME=RDMAIJSERVER
/FILE=SYS$SYSTEM:rdmaijserver_ucx.com
/LIMIT=nn

The first of these commands ($ CONFIG UCX AIJSERVER OBJECT) is
unnecessary. You can safely disregard the first line when setting up to use
TCP/IP with Hot Standby.

The documentation will be corrected in a future release of Oracle Rdb.

4.5.4 Change in the Way RDMAIJ Server is Set Up in UCX
Starting with Oracle Rdb Release 7.0.2.1, the RDMAIJ image became a varianted
image. Therefore, the information in Section 2.12, "Step 10: Specify the Network
Transport Protocol," of the Oracle Rdb7 and Oracle CODASYL DBMS Guide
to Hot Standby Databases has become outdated with regard to setting up the
RDMAIJSERVER object when using UCX as the network transport protocol. The
UCX SET SERVICE command is now similar to the following:

$ UCX SET SERVICE RDMAIJ -
/PORT=port_number -
/USER_NAME=RDMAIJ -
/PROCESS_NAME=RDMAIJ -
/FILE=SYS$SYSTEM:RDMAIJSERVER.com -
/LIMIT=limit

For Oracle Rdb multiversion, the UCX SET SERVICE command is similar to the
following:

Documentation Corrections, Additions and Changes 4–11

$ UCX SET SERVICE RDMAIJ70 -
/PORT=port_number -
/USER_NAME=RDMAIJ70 -
/PROCESS_NAME=RDMAIJ70 -
/FILE=SYS$SYSTEM:RDMAIJSERVER70.com -
/LIMIT=limit

The installation procedure for Oracle Rdb creates a user named RDMAIJ(nn)
and places a file called RDMAIJSERVER(nn).COM in SYS$SYSTEM. The
RMONSTART(nn).COM command procedure will try to enable a service called
RDMAIJ(nn) if UCX is installed and running.

Changing the RDMAIJ server to a varianted image does not impact installations
using DECNet since the correct DECNet object is created during the Oracle Rdb
installation.

4.5.5 CREATE INDEX Operation Supported for Hot Standby
On Page 1-13 of the Oracle Rdb7 and Oracle CODASYL DBMS Guide to Hot
Standby Databases, the add new index operation is incorrectly listed as an offline
operation not supported by Hot Standby. The CREATE INDEX operation is now
fully supported by Hot Standby, as long as the transaction does not span all
available AIJ journals, including emergency AIJ journals.

4.6 Oracle Rdb7 for OpenVMS Installation and Configuration Guide
This section provides information that is missing from or changed in V7.0 of the
Oracle Rdb7 for OpenVMS Installation and Configuration Guide.

4.6.1 Suggestion to Increase GH_RSRVPGCNT Removed
The Oracle Rdb7 for OpenVMS Installation and Configuration Guide contains a
section titled "Installing Oracle Rdb Images as Resident on OpenVMS Alpha".
This section includes information about increasing the value of the OpenVMS
system parameter GH_RSRVPGCNT when you modify the RMONSTART.COM or
SQL$STARTUP.COM procedures to install Oracle Rdb images with the Resident
qualifier.

Note that modifying the parameter GH_RSRVPGCNT is only required if the
RMONSTART.COM or SQL$STARTUP.COM procedures have been manually
modified to install Oracle Rdb images with the Resident qualifier. Furthermore,
if the RMONSTART.COM and SQL$STARTUP.COM procedures are executed
during the system startup procedure (directly from SYSTARTUP_VMS.COM, for
example), there is no need to modify the GH_RSRVPGCNT parameter.

Oracle Corporation recommends that you do not modify the value of the GH_
RSRVPGCNT system parameter unless it is absolutely required. Some versions
of OpenVMS on some hardware platforms require GH_RSRVPGCNT to be a value
of zero in order to ensure the highest level of system performance.

4.6.2 Prerequisite Software
In addition to the software listed in the Oracle Rdb Installation and Configuration
Guide and at the url http://www.oracle.com/rdb/product_info/index.html, note that
the MACRO-32 compiler and the OpenVMS linker are required OpenVMS
components in order to install Oracle Rdb on your OpenVMS Alpha system.

4–12 Documentation Corrections, Additions and Changes

The MACRO-32 Compiler for OpenVMS Alpha is a standard component of the
OpenVMS Operating System. It is used to compile VAX MACRO assembly
language source files into native OpenVMS Alpha object code. During the Oracle
Rdb installation procedure, and portions of the installation verification procedure
(such as the test for RDBPRE), the MACRO-32 compiler is required.

The OpenVMS linker is a standard component of the OpenVMS Operating
System. It is used to link one or more input files into a program image and
defines the execution characteristics of the image. The linker will be required
for application development and is likewise used by the Oracle Rdb installation
procedure and the installation verification procedure.

4.6.3 Defining the RDBSERVER Logical Name
Sections 4.3.7.1 and 4.3.7.2 in the Oracle Rdb7 for OpenVMS Installation and
Configuration Guide provide the following examples for defining the RDBSERVER
logical name: $ DEFINE RDBSERVER SYS$SYSTEM:RDBSERVER70.EXE

and $ DEFINE RDBSERVER SYS$SYSTEM:RDBSERVER61.EXE

These definitions are inconsistent with other command procedures that attempt
to reference the RDBSERVERxx.EXE image. Below is one example where
the RDBSERVER.COM procedure references SYS$COMMON:<SYSEXE> and
SYS$COMMON:[SYSEXE] rather than SYS$SYSTEM.

$ if .not. -
((f$locate ("SYS$COMMON:<SYSEXE>",rdbserver_image) .ne. log_len) .or. -
(f$locate ("SYS$COMMON:[SYSEXE]",rdbserver_image) .ne. log_len))

$ then
$ say "’’rdbserver_image’ is not found in SYS$COMMON:<SYSEXE>"
$ say "RDBSERVER logical is ’’rdbserver_image’"
$ exit
$ endif

In this case, if the logical name were defined as instructed in the Oracle Rdb7 for
OpenVMS Installation and Configuration Guide, the image would not be found.

The correct definition of the logical name is as follows: DEFINE RDBSERVER
SYS$COMMON:<SYSEXE>RDBSERVER70.EXE

and DEFINE RDBSERVER SYS$COMMON:<SYSEXE>RDBSERVER61.EXE

4.7 Guide to Database Design and Definition
This section provides information that is missing from or changed in release 7.0
of the Oracle Rdb7 Guide to Database Design and Definition.

4.7.1 Lock Timeout Interval Logical Incorrect
On Page 7-31 of Section 7.4.8 in the Oracle Rdb7 Guide to Database Design
and Definition, the RDM$BIND_LOCK_TIMEOUT logical name is referenced
incorrectly. The correct logical name is RDM$BIND_LOCK_TIMEOUT_
INTERVAL.

The Oracle Rdb7 Guide to Database Design and Definition will be corrected in a
future release.

Documentation Corrections, Additions and Changes 4–13

4.7.2 Example 4-13 and Example 4-14 Are Incorrect
Example 4-13 showing vertical partitioning, and Example 4-14, showing vertical
and horizontal partitioning, are incorrect. They should appear as follows:

Example 4-13:

SQL> CREATE STORAGE MAP EMPLOYEES_1_MAP
cont> FOR EMPLOYEES
cont> ENABLE COMPRESSION
cont> STORE COLUMNS (EMPLOYEE_ID, LAST_NAME, FIRST_NAME,
cont> MIDDLE_INITIAL, STATUS_CODE)
cont> DISABLE COMPRESSION
cont> IN ACTIVE_AREA
cont> STORE COLUMNS (ADDRESS_DATA_1, ADDRESS_DATA_2, CITY,
cont> STATE, POSTAL_CODE)
cont> IN INACTIVE_AREA
cont> STORE IN OTHER_AREA;

Example 4-14:

SQL> CREATE STORAGE MAP EMPLOYEES_1_MAP2
cont> FOR EMP2
cont> STORE COLUMNS (EMPLOYEE_ID, LAST_NAME, FIRST_NAME,
cont> MIDDLE_INITIAL, STATUS_CODE)
cont> USING (EMPLOYEE_ID)
cont> IN ACTIVE_AREA_A WITH LIMIT OF (’00399’)
cont> IN ACTIVE_AREA_B WITH LIMIT OF (’00699’)
cont> OTHERWISE IN ACTIVE_AREA_C
cont> STORE COLUMNS (ADDRESS_DATA_1, ADDRESS_DATA_2, CITY,
cont> STATE, POSTAL_CODE)
cont> USING (EMPLOYEE_ID)
cont> IN INACTIVE_AREA_A WITH LIMIT OF (’00399’)
cont> IN INACTIVE_AREA_B WITH LIMIT OF (’00699’)
cont> OTHERWISE IN INACTIVE_AREA_C
cont> STORE IN OTHER_AREA;

4.8 Oracle RMU Reference Manual, Release 7.0
This section provides information that is missing from or changed in V7.0 of the
Oracle RMU Reference Manual.

4.8.1 RMU Unload After_Journal Null Bit Vector Clarification
Each output record from the RMU /UNLOAD /AFTER_JOURNAL command
includes a vector (array) of bits. There is one bit for each field in the data record.
If a null bit value is 1, the corresponding field is NULL; if a null bit value is
0, the corresponding field is not NULL and contains an actual data value. The
contents of a data field that is NULL are not initialized and are not predictable.

The null bit vector begins on a byte boundary. The field RDB$LM_NBV_LEN
indicates the number of valid bits (and thus, the number of columns in the table).
Any extra bits in the final byte of the vector after the final null bit are unused
and the contents are unpredictable.

The following example C program demonstrates one possible way of reading
and parsing a binary output file (including the null bit vector) from the RMU
/UNLOAD /AFTER_JOURNAL command. This sample program has been tested
using Oracle Rdb V7.0.5 and higher and HP C V6.2-009 on OpenVMS Alpha
V7.2-1. It is meant to be used as a template for writing your own program.

4–14 Documentation Corrections, Additions and Changes

/* DATATYPES.C */

#include <stdio.h>
#include <descrip.h>
#include <starlet.h>
#include <string.h>

#pragma member_alignment __save
#pragma nomember_alignment

struct { /* Database key structure */
unsigned short lno; /* line number */
unsigned int pno; /* page number */
unsigned short dbid; /* area number */
} dbkey;

typedef struct { /* Null bit vector with one bit for each column */
unsigned n_tinyint :1;
unsigned n_smallint :1;
unsigned n_integer :1;
unsigned n_bigint :1;
unsigned n_double :1;
unsigned n_real :1;
unsigned n_fixstr :1;
unsigned n_varstr :1;
} nbv_t;

struct { /* LogMiner output record structure for table DATATYPES */
char rdb$lm_action;
char rdb$lm_relation_name [31];
int rdb$lm_record_type;
short rdb$lm_data_len;
short rdb$lm_nbv_len;
__int64 rdb$lm_dbk;
__int64 rdb$lm_start_tad;
__int64 rdb$lm_commit_tad;
__int64 rdb$lm_tsn;
short rdb$lm_record_version;
char f_tinyint;
short f_smallint;
int f_integer;
__int64 f_bigint;
double f_double;
float f_real;
char f_fixstr[10];
short f_varstr_len; /* length of varchar */
char f_varstr[10]; /* data of varchar */
nbv_t nbv;
} lm;

#pragma member_alignment __restore

main ()
{ char timbuf [24];

struct dsc$descriptor_s dsc = {
23, DSCK_DTYPE_T, DSCK_CLASS_S, timbuf};

FILE *fp = fopen ("datatypes.dat", "r", "ctx=bin");

memset (&timbuf, 0, sizeof(timbuf));

while (fread (&lm, sizeof(lm), 1, fp) != 0)
{

printf ("Action = %c\n", lm.rdb$lm_action);
printf ("Table = %.*s\n", sizeof(lm.rdb$lm_relation_name),

lm.rdb$lm_relation_name);
printf ("Type = %d\n", lm.rdb$lm_record_type);
printf ("Data Len = %d\n", lm.rdb$lm_data_len);
printf ("Null Bits = %d\n", lm.rdb$lm_nbv_len);

Documentation Corrections, Additions and Changes 4–15

memcpy (&dbkey, &lm.rdb$lm_dbk, sizeof(lm.rdb$lm_dbk));
printf ("DBKEY = %d:%d:%d\n", dbkey.dbid,

dbkey.pno,
dbkey.lno);

sys$asctim (0, &dsc, &lm.rdb$lm_start_tad, 0);
printf ("Start TAD = %s\n", timbuf);

sys$asctim (0, &dsc, &lm.rdb$lm_commit_tad, 0);
printf ("Commit TAD = %s\n", timbuf);

printf ("TSN = %Ld\n", lm.rdb$lm_tsn);
printf ("Version = %d\n", lm.rdb$lm_record_version);

if (lm.nbv.n_tinyint == 0)
printf ("f_tinyint = %d\n", lm.f_tinyint);

else printf ("f_tinyint = NULL\n");

if (lm.nbv.n_smallint == 0)
printf ("f_smallint = %d\n", lm.f_smallint);

else printf ("f_smallint = NULL\n");

if (lm.nbv.n_integer == 0)
printf ("f_integer = %d\n", lm.f_integer);

else printf ("f_integer = NULL\n");

if (lm.nbv.n_bigint == 0)
printf ("f_bigint = %Ld\n", lm.f_bigint);

else printf ("f_bigint = NULL\n");

if (lm.nbv.n_double == 0)
printf ("f_double = %f\n", lm.f_double);

else printf ("f_double = NULL\n");

if (lm.nbv.n_real == 0)
printf ("f_real = %f\n", lm.f_real);

else printf ("f_real = NULL\n");

if (lm.nbv.n_fixstr == 0)
printf ("f_fixstr = %.*s\n", sizeof (lm.f_fixstr),

lm.f_fixstr);
else printf ("f_fixstr = NULL\n");

if (lm.nbv.n_varstr == 0)
printf ("f_varstr = %.*s\n", lm.f_varstr_len, lm.f_varstr);

else printf ("f_varstr = NULL\n");

printf ("\n");
}

}

Example sequence of commands to create a table, unload the data and display
the contents with this program:

4–16 Documentation Corrections, Additions and Changes

SQL> ATTACH ’FILE MF_PERSONNEL’;
SQL> CREATE TABLE DATATYPES (

F_TINYINT TINYINT
,F_SMALLINT SMALLINT
,F_INTEGER INTEGER
,F_BIGINT BIGINT
,F_DOUBLE DOUBLE PRECISION
,F_REAL REAL
,F_FIXSTR CHAR (10)
,F_VARSTR VARCHAR (10));

SQL> COMMIT;
SQL> INSERT INTO DATATYPES VALUES (1, NULL, 2, NULL, 3, NULL, ’THIS’, NULL);
SQL> INSERT INTO DATATYPES VALUES (NULL, 4, NULL, 5, NULL, 6, NULL, ’THAT’);
SQL> COMMIT;
SQL> EXIT;
$ RMU /BACKUP /AFTER_JOURNAL MF_PERSONNEL AIJBCK.AIJ
$ RMU /UNLOAD /AFTER_JOURNAL MF_PERSONNEL AIJBCK.AIJ -

/TABLE = (NAME=DATATYPES, OUTPUT=DATATYPES.DAT)
$ CC DATATYPES.C
$ LINK DATATYPES.OBJ
$ RUN DATATYPES.EXE

4.8.2 New Transaction_Mode Qualifier for Oracle RMU Commands
A new qualifier, Transaction_Mode, has been added to the RMU Copy, Move_Area,
Restore, and Restore Only_Root commands. You can use this qualifier to set the
allowable transaction modes for the database root file created by these commands.
If you are not creating a root file as part of one of these commands, for example,
you are restoring an area, attempting to use this qualifier returns a CONFLSWIT
error. This qualifier is similar to the SET TRANSACTION MODE clause of the
CREATE DATABASE command in interactive SQL.

The primary use of this qualifier is when you restore a backup file (of the master
database) to create a Hot Standby database. Include the Transaction_Mode
qualifier on the RMU Restore command when you create the standby database
(prior to starting replication operations). Because only read-only transactions are
allowed on the standby database, you should use the Transaction_Mode=Read_
Only qualifier setting. This setting prevents modifications to the standby
database at all times, even when replication operations are not active.

You can specify the following transaction modes for the Transaction_Mode
qualifier:

All
Current
None
[No]Batch_Update
[No]Read_Only
[No]Exclusive
[No]Exclusive_Read
[No]Exclusive_Write
[No]Protected
[No]Protected_Read
[No]Protected_Write
[No]Shared
[No]Shared_Read
[No]Shared_Write

Note that [No] indicates that the value can be negated. For example, the
NoExclusive_Write option indicates that exclusive write is not an allowable access
mode for this database. If you specify the Shared, Exclusive, or Protected option,
Oracle RMU assumes you are referring to both reading and writing in these
modes. For example, the Transaction_Mode=Shared option indicates that you

Documentation Corrections, Additions and Changes 4–17

want both Shared_Read and Shared_Write as transaction modes. No mode is
enabled unless you add that mode to the list or you use the ALL option to enable
all modes.

You cannot negate the following three options: All, which enables all transaction
modes; None, which disables all transaction modes; and Current, which enables
all transaction modes that are set for the source database. If you do not specify
the Transaction_Mode qualifier, Oracle RMU uses the transaction modes enabled
for the source database.

You can list one qualifier that enables or disables a particular mode followed
by another that does the opposite. For example, Transaction_Mode=(NoShared_
Write, Shared) is ambiguous because the first value disables Shared_Write access
while the second value enables Shared_Write access. Oracle RMU resolves the
ambiguities by first enabling all modes that are enabled by the items in the
Transaction_Mode list and then disabling those modes that are disabled by items
in the Transaction_Mode list. The order of items in the list is irrelevant. In the
example discussed, Shared_Read is enabled and Shared_Write is disabled.

The following example shows how to set a newly restored database to allow read-
only transactions only. After Oracle RMU executes the command, the database is
ready for you to start Hot Standby replication operations.

$ RMU/RESTORE/TRANSACTION_MODE=READ_ONLY MF_PERSONNEL.RBF

4.8.3 RMU Server After_Journal Stop Command
If database replication is active and you attempt to stop the database AIJ Log
Server, Oracle Rdb returns an error. You must stop database replication before
attempting to stop the server.

In addition, a new qualifier, Output=filename, has been added to the RMU Server
After_Journal Stop command. This optional qualifier allows you to specify the
file where the operational log is to be created. The operational log records the
transmission and receipt of network messages.

If you do not include a directory specification with the file name, the log file is
created in the database root file directory. It is invalid to include a node name as
part of the file name specification.

Note that all Hot Standby bugcheck dumps are written to the corresponding
bugcheck dump file; bugcheck dumps are not written to the file you specify with
the Output qualifier.

4.8.4 Incomplete Description of Protection Qualifier for RMU Backup
After_Journal Command

The description of the Protection Qualifier for the RMU Backup After_Journal
command is incomplete in the Oracle RMU Reference Manual for Digital UNIX.
The complete description is as follows:

The Protection qualifier specifies the system file protection for the backup file
produced by the RMU Backup After_Journal command. If you do not specify the
Protection qualifier, the default access permissions are -rw-r—– for backups to
disk or tape.

Tapes do not allow delete or execute access and the superuser account always
has both read and write access to tapes. In addition, a more restrictive class
accumulates the access rights of the less restrictive classes.

4–18 Documentation Corrections, Additions and Changes

If you specify the Protection qualifier explicitly, the differences in access
permissions applied for backups to tape or disk as noted in the preceding
paragraph are applied. Thus, if you specify Protection=(S,O,G:W,W:R), the access
permissions on tape becomes rw-rw-r-.

4.8.5 RMU Extract Command Options Qualifier
A documentation error exists in the description of the Options=options-list
qualifier of the RMU Extract command. Currently, the documentation states
that this qualifier is not applied to output created by the Items=Volume
qualifier. This is incorrect. Beginning with 6.1 of Oracle Rdb, the behavior of the
Options=options-list qualifier is applied to output created by the Items=Volume
qualifier.

4.8.6 RDM$SNAP_QUIET_POINT Logical is Incorrect
On page 2-72 of the Oracle RMU Reference Manual, the reference to the
RDM$SNAP_QUIET_POINT logical is incorrect. The correct logical name is
RDM$BIND_SNAP_QUIET_POINT.

4.8.7 Using Delta Time with RMU Show Statistics Command
Oracle RMU does not support the use of delta time. However, because the
OpenVMS platform does, there is a workaround. You can specify delta time using
the following syntax with the RMU Show Statistics command:

$ RMU/SHOW STATISTICS/OUTPUT=file-spec/UNTIL=" ’ ’ f$cvtime ("+7:00") ’ "

The +7:00 adds 7 hours to the current time.

You can also use "TOMORROW" and "TODAY+n".

This information will be added to the description of the Until qualifier of the
RMU Show Statistics command in a future release of the Oracle RMU Reference
Manual.

4.9 Oracle Rdb7 Guide to Database Performance and Tuning
The following section provides corrected, clarified, or omitted information for the
Oracle Rdb7 Guide to Database Performance and Tuning manual.

4.9.1 Dynamic OR Optimization Formats
In Table C-2 on Page C-7 of the Oracle Rdb7 Guide to Database Performance
and Tuning, the dynamic OR optimization format is incorrectly documented as
[l:h...]n. The correct formats for Oracle Rdb Release 7.0 and later are [(l:h)n] and
[l:h,l2:h2].

4.9.2 Oracle Rdb Logical Names
The Oracle Rdb7 Guide to Database Performance and Tuning contains a table
in Chapter 2 summarizing the Oracle Rdb logical names. The information in
the following table supersedes the entries for the RDM$BIND_RUJ_ALLOC_
BLKCNT and RDM$BIND_RUJ_EXTEND_BLKCNT logical names.

RDM$BIND_RUJ_ALLOC_BLKCNT Allows you to override the default value of
the .ruj file. The block count value can be defined between 0 and 2 billion with a
default of 127.

RDM$BIND_RUJ_EXTEND_BLKCNT Allows you to pre-extend the .ruj files for
each process using a database. The block count value can be defined between 0
and 65535 with a default of 127.

Documentation Corrections, Additions and Changes 4–19

4.9.3 Waiting for Client Lock Message
The Oracle Rdb7 Guide to Database Performance and Tuning contains a section
in Chapter 3 that describes the Performance Monitor Stall Messages screen. The
section contains a list describing the "Waiting for" messages. The description of
the "waiting for client lock" message was missing from the list.

A client lock indicates that an Rdb metadata lock is in use. The term client
indicates that Rdb is a client of the Rdb locking services. The metadata locks
are used to guarantee memory copies of the metadata (table, index and column
definitions) are consistent with the on-disk versions.

The "waiting for client lock" message means the database user is requesting an
incompatible locking mode. For example, when trying to drop a table which is in
use, the drop operation requests a PROTECTED WRITE lock on the metadata
object (such as a table) which is incompatible with the existing PROTECTED
READ lock currently used by other users of the table.

The lock name for these special locks consist of an encoded 16 byte name. The
first 4 bytes contains the leading four bytes of the user name (for system objects
the RDB$ prefix is skipped) followed by three longwords. The lock is displayed
in text format first - here will be seen the prefix for the table, routine, or module
name; followed by its hexadecimal representation. The text version masks out
non-printable characters with a dot (.).

waiting for client ’...."...EMPL’ 4C504D45000000220000000400000055

The leftmost value seen in the hexadecimal output contains the name prefix
which is easier read in the text field. Then comes a hex number (00000022)
which is the id of the object. The id is described below for tables, views, functions,
procedures, modules, and sequences.

• For tables and views, the id represents the unique value found in the
RDB$RELATION_ID column of the RDB$RELATIONS system relation for
the given table.

• For routines (that is functions and procedures), the id represents the unique
value found in the RDB$ROUTINE_ID column of the RDB$ROUTINES
system relation for the given routine.

• For modules, the id represents the unique value found in the
RDB$MODULE_ID column of the RDB$MODULES system relation for
the given module.

• For sequences, the id represents the unique value found in the
RDB$SEQUENCE_ID column of the RDB$SEQUENCES system relation
for the given sequence.

The next value displayed signifies the object type. The following table describes
objects and their hexadecimal type values.

4–20 Documentation Corrections, Additions and Changes

Table 4–2 Objects and Their Hexadecimal Type Value

Object Hexadecimal Value

Tables or views 00000004

Modules 00000015

Routines 00000016

Sequences 00000019

The last value in the hexadecimal output represents the lock type. The
hexadecimal value 55 indicates this is a client lock and distinct from page
and other data structure locks.

The following example shows a "waiting for client lock" message from a Stall
Messages screen while the application was processing the EMPLOYEES table
from MF_PERSONNEL. The terminal should be set to 132 characters wide to
view the full client lock string.

Process.ID Since.................. T Stall.reason.............................Lock.ID.
27800643:1 waiting for logical area 79 (CW) 16004833
27800507:1 31-OCT-2002 16:05:15.71 W waiting for client ’...."...EMPL’ 4C504D45000000220000000400000055 (PW)

To determine the name of the referenced object given the lock ID, the following
queries can be used based on the object type:

SQL> select RDB$RELATION_NAME from RDB$RELATIONS where RDB$RELATION_ID = 25;
SQL> select RDB$MODULE_NAME from RDB$MODULES where RDB$MODULE_ID = 12;
SQL> select RDB$ROUTINE_NAME from RDB$ROUTINES where RDB$ROUTINE_ID = 7;
SQL> select RDB$SEQUENCE_NAME from RDB$SEQUENCES where RDB$SEQUENCE_ID = 2;

For more detailed lock information, perform the following steps:

• Press the L option from the horizontal menu to display a menu of lock IDs.

• Select the desired lock ID.

4.9.4 RDMS$TTB_HASH_SIZE Logical Name
The logical name RDMS$TTB_HASH_SIZE sets the size of the hash table used
for temporary tables. If the logical name is not defined, Oracle Rdb uses a default
value of 1249.

If you expect that temporary tables will be large (that is, 10K or more rows),
use this logical name to adjust the hash table size to avoid long hash chains.
Set the value to approximately 1/4 of the expected maximum number of rows
for each temporary table. For example, if a temporary table will be populated
with 100,000 rows, define this logical name to be 25000. If there are memory
constraints on your system, you should define the logical name to be no higher
than this value (1/4 of the expected maximum number of rows).

4.9.5 Error in Updating and Retrieving a Row by Dbkey Example 3-22
Example 3-22 in Section 3.8.3 that shows how to update and retrieve a row by
dbkey is incorrect. The example should appear as follows:

Documentation Corrections, Additions and Changes 4–21

SQL> ATTACH ’FILENAME MF_PERSONNEL.RDB’;
SQL> --
SQL> -- Declare host variables
SQL> --
SQL> DECLARE :hv_row INTEGER; -- Row counter
SQL> DECLARE :hv_employee_id ID_DOM; -- EMPLOYEE_ID field
SQL> DECLARE :hv_employee_id_ind SMALLINT; -- Null indicator variable
SQL> --
SQL> DECLARE :hv_dbkey CHAR(8); -- DBKEY storage
SQL> DECLARE :hv_dbkey_ind SMALLINT; -- Null indicator variable
SQL> --
SQL> DECLARE :hv_last_name LAST_NAME_DOM;
SQL> DECLARE :hv_new_address_data_1 ADDRESS_DATA_1_DOM;
SQL> --
SQL> SET TRANSACTION READ WRITE;
SQL> BEGIN
cont> --
cont> -- Set the search value for SELECT
cont> --
cont> SET :hv_last_name = ’Ames’;
cont> --
cont> -- Set the NEW_ADDRESS_DATA_1 value
cont> --
cont> SET :hv_new_address_data_1 = ’100 Broadway Ave.’;
cont> END;
SQL> COMMIT;
SQL> --
SQL> SET TRANSACTION READ ONLY;
SQL> BEGIN
cont> SELECT E.EMPLOYEE_ID, E.DBKEY
cont> INTO :hv_employee_id INDICATOR :hv_employee_id_ind,
cont> :hv_dbkey INDICATOR :hv_dbkey_ind
cont> FROM EMPLOYEES E
cont> WHERE E.LAST_NAME = :hv_last_name
cont> LIMIT TO 1 ROW;
cont> --
cont> GET DIAGNOSTICS :hv_row = ROW_COUNT;
cont> END;
SQL> COMMIT;
SQL> --
SQL> SET TRANSACTION READ WRITE RESERVING EMPLOYEES FOR SHARED WRITE;
SQL> BEGIN
cont> IF (:hv_row = 1) THEN
cont> BEGIN
cont> UPDATE EMPLOYEES E
cont> SET E.ADDRESS_DATA_1 = :hv_new_address_data_1
cont> WHERE E.DBKEY = :hv_dbkey;
cont> END;
cont> END IF;
cont> END;
SQL> COMMIT;
SQL> --
SQL> -- Display result of change
SQL> --
SQL> SET TRANSACTION READ ONLY;
SQL> SELECT E.*
cont> FROM EMPLOYEES E
cont> WHERE E.DBKEY = :hv_dbkey;
EMPLOYEE_ID LAST_NAME FIRST_NAME MIDDLE_INITIAL
ADDRESS_DATA_1 ADDRESS_DATA_2 CITY

STATE POSTAL_CODE SEX BIRTHDAY STATUS_CODE
00416 Ames Louie A
100 Broadway Ave. Alton

NH 03809 M 13-Apr-1941 1

4–22 Documentation Corrections, Additions and Changes

1 row selected
SQL>

The new example will appear in a future publication of the Oracle Rdb7 Guide to
Database Performance and Tuning manual.

4.9.6 Error in Calculation of Sorted Index in Example 3-46
Example 3-46 in Section 3.9.5.1 shows the output when you use the RMU
Analyze Indexes command and specify the Option=Debug qualifier and the
DEPARTMENTS_INDEX sorted index.

The description of the example did not include the 8 byte dbkey in the calculation
of the sorted index. The complete description is as follows:

The entire index (26 records) is located on pages 2 and 3 in logical area 72 and
uses 188 bytes of a possible 430 bytes or the node record is 47 percent full. Note
that due to index compression, the node size has decreased in size from 422 bytes
to 188 bytes and the percent fullness of the node records has dropped from 98 to
47 percent. Also note that the used/avail value in the summary information at
the end of the output does not include the index header and trailer information,
which accounts for 32 bytes. This value is shown for each node record in the
detailed part of the output. The number of bytes used by the index is calculated
as follows: the sort key is 4 bytes plus a null byte for a total of 5 bytes. The
prefix is 1 byte and the suffix is 1 byte. The prefix indicates the number of bytes
in the preceding key that are the same and the suffix indicates the number of
bytes that are different from the preceding key. The dbkey pointer to the row is 8
bytes. There are 26 data rows multiplied by 15 bytes for a total of 390 bytes. The
15 bytes include:

• 7 bytes for the sort key: length + null byte + prefix + suffix

• 8 bytes for the dbkey pointer to the row

Add 32 bytes for index header and trailer information for the index node to the
390 bytes for a total of 422 bytes used. Index compression reduces the number of
bytes used to 188 bytes used.

The revised description will appear in a future publication of the Oracle Rdb7
Guide to Database Performance and Tuning manual.

4.9.7 Documentation Error in Section C.7
The Oracle Rdb Guide to Database Performance And Tuning, Volume 2 contains
an error in Section C.7 titled Displaying Sort Statistics with the R Flag.

When describing the output from this debugging flag, bullet 9 states:

• Work File Alloc indicates how many work files were used in the sort
operation. A zero (0) value indicates that the sort was accomplished
completely in memory.

This is incorrect, the statistics should be described as show below:

• Work File Alloc indicates how much space (in blocks) was allocated in the
work files for this sort operation. A zero (0) value indicates that the sort was
accomplished completely in memory.

This error will be corrected in a future release of Oracle Rdb Guide to Database
Performance And Tuning.

Documentation Corrections, Additions and Changes 4–23

4.9.8 Missing Tables Descriptions for the RDBEXPERT Collection Class
Appendix B in the Oracle Rdb7 Guide to Database Performance and Tuning
describes the event-based data tables in the formatted database for the Oracle
Rdb PERFORMANCE and RDBEXPERT collection classes. This section describes
the missing tables for the RDBEXPERT collection class.

Table 4–3 shows the TRANS_TPB table.

Table 4–3 Columns for Table EPC$1_221_TRANS_TPB

Column Name Data Type Domain

COLLECTION_RECORD_ID SMALLINT COLLECTION_RECORD_ID_
DOMAIN

IMAGE_RECORD_ID INTEGER IMAGE_RECORD_ID_DOMAIN

CONTEXT_NUMBER INTEGER CONTEXT_NUMBER_DOMAIN

TIMESTAMP_POINT DATE VMS

CLIENT_PC INTEGER

STREAM_ID INTEGER

TRANS_ID VARCHAR(16)

TRANS_ID_STR_ID INTEGER STR_ID_DOMAIN

TPB VARCHAR(127)

TPB_STR_ID INTEGER STR_ID_DOMAIN

Table 4–4 shows the TRANS_TPB_ST table. An index is provided for this
table. It is defined with column STR_ID, duplicates are allowed, and the type is
sorted.

Table 4–4 Columns for Table EPC$1_221_TRANS_TPB_ST

Column Name Data Type Domain

STR_ID INTEGER STR_ID_DOMAIN

SEGMENT_NUMBER SMALLINT SEGMENT_NUMBER_DOMAIN

STR_SEGMENT VARCHAR(128)

4.9.9 Missing Columns Descriptions for Tables in the Formatted Database
Some of the columns were missing from the tables in Appendix B in the Oracle
Rdb7 Guide to Database Performance and Tuning. The complete table definitions
are described in this section.

Table 4–5 shows the DATABASE table.

Table 4–5 Columns for Table EPC$1_221_DATABASE

Column Name Data Type Domain

COLLECTION_RECORD_ID SMALLINT COLLECTION_RECORD_ID_
DOMAIN

(continued on next page)

4–24 Documentation Corrections, Additions and Changes

Table 4–5 (Cont.) Columns for Table EPC$1_221_DATABASE

Column Name Data Type Domain

IMAGE_RECORD_ID INTEGER IMAGE_RECORD_ID_DOMAIN

CONTEXT_NUMBER INTEGER CONTEXT_NUMBER_DOMAIN

TIMESTAMP_POINT DATE VMS

CLIENT_PC INTEGER

STREAM_ID INTEGER

DB_NAME VARCHAR(255)

DB_NAME_STR_ID INTEGER STR_ID_DOMAIN

IMAGE_FILE_NAME VARCHAR(255)

IMAGE_FILE_NAME_STR_ID INTEGER STR_ID_DOMAIN

Table 4–6 shows the REQUEST_ACTUAL table.

Table 4–6 Columns for Table EPC$1_221_REQUEST_ACTUAL

Column Name Data Type Domain

COLLECTION_RECORD_ID SMALLINT COLLECTION_RECORD_ID_
DOMAIN

IMAGE_RECORD_ID INTEGER IMAGE_RECORD_ID_DOMAIN

CONTEXT_NUMBER INTEGER CONTEXT_NUMBER_DOMAIN

TIMESTAMP_START DATE VMS

TIMESTAMP_END DATE VMS

DBS_READS_START INTEGER

DBS_WRITES_START INTEGER

RUJ_READS_START INTEGER

RUJ_WRITES_START INTEGER

AIJ_WRITES_START INTEGER

ROOT_READS_START INTEGER

ROOT_WRITES_START INTEGER

BUFFER_READS_START INTEGER

GET_VM_BYTES_START INTEGER

FREE_VM_BYTES_START INTEGER

LOCK_REQS_START INTEGER

REQ_NOT_QUEUED_START INTEGER

REQ_STALLS_START INTEGER

REQ_DEADLOCKS_START INTEGER

PROM_DEADLOCKS_START INTEGER

LOCK_RELS_START INTEGER

LOCK_STALL_TIME_START INTEGER

D_FETCH_RET_START INTEGER

(continued on next page)

Documentation Corrections, Additions and Changes 4–25

Table 4–6 (Cont.) Columns for Table EPC$1_221_REQUEST_ACTUAL

Column Name Data Type Domain

D_FETCH_UPD_START INTEGER

D_LB_ALLOK_START INTEGER

D_LB_GBNEEDLOCK_START INTEGER

D_LB_NEEDLOCK_START INTEGER

D_LB_OLDVER_START INTEGER

D_GB_NEEDLOCK_START INTEGER

D_GB_OLDVER_START INTEGER

D_NOTFOUND_IO_START INTEGER

D_NOTFOUND_SYN_START INTEGER

S_FETCH_RET_START INTEGER

S_FETCH_UPD_START INTEGER

S_LB_ALLOK_START INTEGER

S_LB_GBNEEDLOCK_START INTEGER

S_LB_NEEDLOCK_START INTEGER

S_LB_OLDVER_START INTEGER

S_GB_NEEDLOCK_START INTEGER

S_GB_OLDVER_START INTEGER

S_NOTFOUND_IO_START INTEGER

S_NOTFOUND_SYN_START INTEGER

D_ASYNC_FETCH_START INTEGER

S_ASYNC_FETCH_START INTEGER

D_ASYNC_READIO_START INTEGER

S_ASYNC_READIO_START INTEGER

AS_READ_STALL_START INTEGER

AS_BATCH_WRITE_START INTEGER

AS_WRITE_STALL_START INTEGER

BIO_START INTEGER

DIO_START INTEGER

PAGEFAULTS_START INTEGER

PAGEFAULT_IO_START INTEGER

CPU_START INTEGER

CURRENT_PRIO_START SMALLINT

VIRTUAL_SIZE_START INTEGER

WS_SIZE_START INTEGER

WS_PRIVATE_START INTEGER

WS_GLOBAL_START INTEGER

CLIENT_PC_END INTEGER

STREAM_ID_END INTEGER

(continued on next page)

4–26 Documentation Corrections, Additions and Changes

Table 4–6 (Cont.) Columns for Table EPC$1_221_REQUEST_ACTUAL

Column Name Data Type Domain

REQ_ID_END INTEGER

COMP_STATUS_END INTEGER

REQUEST_OPER_END INTEGER

TRANS_ID_END VARCHAR(16)

TRANS_ID_END_STR_ID INTEGER STR_ID_DOMAIN

DBS_READS_END INTEGER

DBS_WRITES_END INTEGER

RUJ_READS_END INTEGER

RUJ_WRITES_END INTEGER

AIJ_WRITES_END INTEGER

ROOT_READS_END INTEGER

ROOT_WRITES_END INTEGER

BUFFER_READS_END INTEGER

GET_VM_BYTES_END INTEGER

FREE_VM_BYTES_END INTEGER

LOCK_REQS_END INTEGER

REQ_NOT_QUEUED_END INTEGER

REQ_STALLS_END INTEGER

REQ_DEADLOCKS_END INTEGER

PROM_DEADLOCKS_END INTEGER

LOCK_RELS_END INTEGER

LOCK_STALL_TIME_END INTEGER

D_FETCH_RET_END INTEGER

D_FETCH_UPD_END INTEGER

D_LB_ALLOK_END INTEGER

D_LB_GBNEEDLOCK_END INTEGER

D_LB_NEEDLOCK_END INTEGER

D_LB_OLDVER_END INTEGER

D_GB_NEEDLOCK_END INTEGER

D_GB_OLDVER_END INTEGER

D_NOTFOUND_IO_END INTEGER

D_NOTFOUND_SYN_END INTEGER

S_FETCH_RET_END INTEGER

S_FETCH_UPD_END INTEGER

S_LB_ALLOK_END INTEGER

S_LB_GBNEEDLOCK_END INTEGER

S_LB_NEEDLOCK_END INTEGER

S_LB_OLDVER_END INTEGER

(continued on next page)

Documentation Corrections, Additions and Changes 4–27

Table 4–6 (Cont.) Columns for Table EPC$1_221_REQUEST_ACTUAL

Column Name Data Type Domain

S_GB_NEEDLOCK_END INTEGER

S_GB_OLDVER_END INTEGER

S_NOTFOUND_IO_END INTEGER

S_NOTFOUND_SYN_END INTEGER

D_ASYNC_FETCH_END INTEGER

S_ASYNC_FETCH_END INTEGER

D_ASYNC_READIO_END INTEGER

S_ASYNC_READIO_END INTEGER

AS_READ_STALL_END INTEGER

AS_BATCH_WRITE_END INTEGER

AS_WRITE_STALL_END INTEGER

BIO_END INTEGER

DIO_END INTEGER

PAGEFAULTS_END INTEGER

PAGEFAULT_IO_END INTEGER

CPU_END INTEGER

CURRENT_PRIO_END SMALLINT

VIRTUAL_SIZE_END INTEGER

WS_SIZE_END INTEGER

WS_PRIVATE_END INTEGER

WS_GLOBAL_END INTEGER

Table 4–7 shows the TRANSACTION table.

Table 4–7 Columns for Table EPC$1_221_TRANSACTION

Column Name Data Type Domain

COLLECTION_RECORD_ID SMALLINT COLLECTION_RECORD_ID_
DOMAIN

IMAGE_RECORD_ID INTEGER IMAGE_RECORD_ID_DOMAIN

CONTEXT_NUMBER INTEGER CONTEXT_NUMBER_DOMAIN

TIMESTAMP_START DATE VMS

TIMESTAMP_END DATE VMS

CLIENT_PC_START INTEGER

STREAM_ID_START INTEGER

LOCK_MODE_START INTEGER

TRANS_ID_START VARCHAR(16)

TRANS_ID_START_STR_ID INTEGER STR_ID_DOMAIN

GLOBAL_TID_START VARCHAR(16)

(continued on next page)

4–28 Documentation Corrections, Additions and Changes

Table 4–7 (Cont.) Columns for Table EPC$1_221_TRANSACTION

Column Name Data Type Domain

GLOBAL_TID_START_STR_ID INTEGER STR_ID_DOMAIN

DBS_READS_START INTEGER

DBS_WRITES_START INTEGER

RUJ_READS_START INTEGER

RUJ_WRITES_START INTEGER

AIJ_WRITES_START INTEGER

ROOT_READS_START INTEGER

ROOT_WRITES_START INTEGER

BUFFER_READS_START INTEGER

GET_VM_BYTES_START INTEGER

FREE_VM_BYTES_START INTEGER

LOCK_REQS_START INTEGER

REQ_NOT_QUEUED_START INTEGER

REQ_STALLS_START INTEGER

REQ_DEADLOCKS_START INTEGER

PROM_DEADLOCKS_START INTEGER

LOCK_RELS_START INTEGER

LOCK_STALL_TIME_START INTEGER

D_FETCH_RET_START INTEGER

D_FETCH_UPD_START INTEGER

D_LB_ALLOK_START INTEGER

D_LB_GBNEEDLOCK_START INTEGER

D_LB_NEEDLOCK_START INTEGER

D_LB_OLDVER_START INTEGER

D_GB_NEEDLOCK_START INTEGER

D_GB_OLDVER_START INTEGER

D_NOTFOUND_IO_START INTEGER

D_NOTFOUND_SYN_START INTEGER

S_FETCH_RET_START INTEGER

S_FETCH_UPD_START INTEGER

S_LB_ALLOK_START INTEGER

S_LB_GBNEEDLOCK_START INTEGER

S_LB_NEEDLOCK_START INTEGER

S_LB_OLDVER_START INTEGER

S_GB_NEEDLOCK_START INTEGER

S_GB_OLDVER_START INTEGER

S_NOTFOUND_IO_START INTEGER

S_NOTFOUND_SYN_START INTEGER

(continued on next page)

Documentation Corrections, Additions and Changes 4–29

Table 4–7 (Cont.) Columns for Table EPC$1_221_TRANSACTION

Column Name Data Type Domain

D_ASYNC_FETCH_START INTEGER

S_ASYNC_FETCH_START INTEGER

D_ASYNC_READIO_START INTEGER

S_ASYNC_READIO_START INTEGER

AS_READ_STALL_START INTEGER

AS_BATCH_WRITE_START INTEGER

AS_WRITE_STALL_START INTEGER

AREA_ITEMS_START VARCHAR(128)

AREA_ITEMS_START_STR_ID INTEGER STR_ID_DOMAIN

BIO_START INTEGER

DIO_START INTEGER

PAGEFAULTS_START INTEGER

PAGEFAULT_IO_START INTEGER

CPU_START INTEGER

CURRENT_PRIO_START SMALLINT

VIRTUAL_SIZE_START INTEGER

WS_SIZE_START INTEGER

WS_PRIVATE_START INTEGER

WS_GLOBAL_START INTEGER

CROSS_FAC_2_START INTEGER

CROSS_FAC_3_START INTEGER

CROSS_FAC_7_START INTEGER

CROSS_FAC_14_START INTEGER

DBS_READS_END INTEGER

DBS_WRITES_END INTEGER

RUJ_READS_END INTEGER

RUJ_WRITES_END INTEGER

AIJ_WRITES_END INTEGER

ROOT_READS_END INTEGER

ROOT_WRITES_END INTEGER

BUFFER_READS_END INTEGER

GET_VM_BYTES_END INTEGER

FREE_VM_BYTES_END INTEGER

LOCK_REQS_END INTEGER

REQ_NOT_QUEUED_END INTEGER

REQ_STALLS_END INTEGER

REQ_DEADLOCKS_END INTEGER

PROM_DEADLOCKS_END INTEGER

(continued on next page)

4–30 Documentation Corrections, Additions and Changes

Table 4–7 (Cont.) Columns for Table EPC$1_221_TRANSACTION

Column Name Data Type Domain

LOCK_RELS_END INTEGER

LOCK_STALL_TIME_END INTEGER

D_FETCH_RET_END INTEGER

D_FETCH_UPD_END INTEGER

D_LB_ALLOK_END INTEGER

D_LB_GBNEEDLOCK_END INTEGER

D_LB_NEEDLOCK_END INTEGER

D_LB_OLDVER_END INTEGER

D_GB_NEEDLOCK_END INTEGER

D_GB_OLDVER_END INTEGER

D_NOTFOUND_IO_END INTEGER

D_NOTFOUND_SYN_END INTEGER

S_FETCH_RET_END INTEGER

S_FETCH_UPD_END INTEGER

S_LB_ALLOK_END INTEGER

S_LB_GBNEEDLOCK_END INTEGER

S_LB_NEEDLOCK_END INTEGER

S_LB_OLDVER_END INTEGER

S_GB_NEEDLOCK_END INTEGER

S_GB_OLDVER_END INTEGER

S_NOTFOUND_IO_END INTEGER

S_NOTFOUND_SYN_END INTEGER

D_ASYNC_FETCH_END INTEGER

S_ASYNC_FETCH_END INTEGER

D_ASYNC_READIO_END INTEGER

S_ASYNC_READIO_END INTEGER

AS_READ_STALL_END INTEGER

AS_BATCH_WRITE_END INTEGER

AS_WRITE_STALL_END INTEGER

AREA_ITEMS_END VARCHAR(128)

AREA_ITEMS_END_STR_ID INTEGER STR_ID_DOMAIN

BIO_END INTEGER

DIO_END INTEGER

PAGEFAULTS_END INTEGER

PAGEFAULT_IO_END INTEGER

CPU_END INTEGER

CURRENT_PRIO_END SMALLINT

VIRTUAL_SIZE_END INTEGER

(continued on next page)

Documentation Corrections, Additions and Changes 4–31

Table 4–7 (Cont.) Columns for Table EPC$1_221_TRANSACTION

Column Name Data Type Domain

WS_SIZE_END INTEGER

WS_PRIVATE_END INTEGER

WS_GLOBAL_END INTEGER

CROSS_FAC_2_END INTEGER

CROSS_FAC_3_END INTEGER

CROSS_FAC_7_END INTEGER

CROSS_FAC_14_END INTEGER

Table 4–8 shows the REQUEST_BLR table.

Table 4–8 Columns for Table EPC$1_221_REQUEST_BLR

Column Name Data Type Domain

COLLECTION_RECORD_ID SMALLINT COLLECTION_RECORD_ID_
DOMAIN

IMAGE_RECORD_ID INTEGER IMAGE_RECORD_ID_DOMAIN

CONTEXT_NUMBER INTEGER CONTEXT_NUMBER_DOMAIN

TIMESTAMP_POINT DATE VMS

CLIENT_PC INTEGER

STREAM_ID INTEGER

REQ_ID INTEGER

TRANS_ID VARCHAR(16)

TRANS_ID_STR_ID INTEGER STR_ID_DOMAIN

REQUEST_NAME VARCHAR(31)

REQUEST_NAME_STR_ID INTEGER STR_ID_DOMAIN

REQUEST_TYPE INTEGER

BLR VARCHAR(127)

BLR_STR_ID INTEGER STR_ID_DOMAIN

4.9.10 A Way to Find the Transaction Type of a Particular Transaction Within
the Trace Database

The table EPC$1_221_TRANSACTION in the formatted Oracle Trace database
has a column LOCK_MODE_START of longword datatype. The values of this
column indicate the type of transaction a particular transaction was.

Value Transaction type
----- ----------------
8 Read only
9 Read write
14 Batch update

4–32 Documentation Corrections, Additions and Changes

4.9.11 Using Oracle TRACE Collected Data
The following example shows how the OPTIMIZE AS clause is reflected in the
Oracle TRACE database. When a trace collection is started the following SQL
commands will record the request names.

SQL> attach ‘file personnel’;
SQL> select last_name, first_name
cont> from employees
cont> optimize as request_one;
.
.
.
SQL> select employee_id
cont> from employees
cont> optimize as request_two;
.
.
.
SQL> select employee_id, city, state
cont> from employees
cont> optimize as request_three;
.
.
.
SQL> select last_name, first_name, employee_id, city, state
cont> from employees
cont> optimize as request_four;
.
.
.

Once an Oracle TRACE database has been populated from the collection, a query
such as the following can be used to display the request names and types. The
type values are described in Table 3-10. The unnamed queries in this example
correspond to the queries executed by interactive SQL to validate the names of
the tables an columns referenced in the user supplied queries.

SQL> select REQUEST_NAME, REQUEST_TYPE, TIMESTAMP_POINT
cont> from EPC$1_221_REQUEST_BLR;
REQUEST_NAME REQUEST_TYPE TIMESTAMP_POINT

1 15-JAN-1997 13:23:27.18
1 15-JAN-1997 13:23:27.77

REQUEST_ONE 1 15-JAN-1997 13:23:28.21
REQUEST_TWO 1 15-JAN-1997 13:23:56.55
REQUEST_THREE 1 15-JAN-1997 13:24:57.27
REQUEST_FOUR 1 15-JAN-1997 13:25:25.44
6 rows selected

The next example shows the internal query format (BLR) converted to SQL
strings after EPC$EXAMPLES:EPC_BLR_TOSQL_CONVERTER.COM has been
run.

Documentation Corrections, Additions and Changes 4–33

SQL> SELECT A.REQUEST_NAME, B.SQL_STRING FROM
cont> EPC$1_221_REQUEST_BLR A,
cont> EPC$SQL_QUERIES B
cont> WHERE A.CLIENT_PC = 0 AND A.SQL_ID = B.SQL_ID;
A.REQUEST_NAME
B.SQL_STRING

REQUEST_ONE
SELECT C1.LAST_NAME, C1.FIRST_NAME. FROM EMPLOYEES C1

. . .
REQUEST_TWO

SELECT C1.EMPLOYEE_ID. FROM EMPLOYEES C1
. . .
REQUEST_THREE
SELECT C1.EMPLOYEE_ID, C1.CITY, C1.STATE. FROM EMPLOYEES C1
.
.
.

4 rows selected

Table 4-17 shows the Request Types.

Table 4–9 Request Types

Symbolic Name Value Comment

RDB_K_REQTYPE_OTHER 0 A query executed internally by Oracle
Rdb

RDB_K_REQTYPE_USER_
REQUEST

1 A non-stored SQL statement, which
includes compound statements

RDB_K_REQTYPE_PROCEDURE 2 A stored procedure

RDB_K_REQTYPE_FUNCTION 3 A stored function

RDB_K_REQTYPE_TRIGGER 4 A trigger action

RDB_K_REQTYPE_
CONSTRAINT

5 A table or column constraint

4.9.12 AIP Length Problems in Indexes that Allow Duplicates
When an index allows duplicates, the length stored in the AIP will be 215 bytes,
regardless of the actual index node size. Because an index with duplicates
can have variable node sizes, the 215-byte size is used as a median length to
represent the length of rows in the index’s logical area.

When the row size in the AIP is less than the actual row length, it is highly
likely that SPAM entries will show space is available on pages when they have
insufficient space to store another full size row. This is the most common cause of
insert performance problems.

For example, consider a case where an index node size of 430 bytes (a common
default value) is used; the page size for the storage area where the index is stored
is 2 blocks. After deducting page overhead, the available space on a 2-block page
is 982 bytes. Assume that the page in this example is initially empty.

1. A full size (430-byte) index node is stored. As 8 bytes of overhead are
associated with each row stored on a page, that leaves 982-430-8 = 544 free
bytes remaining on the page.

4–34 Documentation Corrections, Additions and Changes

2. A duplicate key entry is made in that index node and thus a duplicate
node is created on the same page. An initial duplicate node is 112 bytes
long (duplicate nodes can have a variety of sizes depending on when they
are created, but for this particular example, 112 bytes is used). Therefore,
544-112-8 = 424 free bytes remain on the page.

At this point, 424 bytes are left on the page. That is greater than the 215 bytes
that the AIP shows as the row length for the logical area, so the SPAM page
shows that the page has space available. However, an attempt to store a full size
index node on the page will fail, because the remaining free space (424 bytes) is
not enough to store a 430-byte node.

In this case, another candidate page must be selected via the SPAM page, and the
process repeats until a page that truly has sufficient free space available is found.
In a logical area that contains many duplicate nodes, a significant percentage of
the pages in the logical area may fit the scenario just described. When that is the
case, and a new full size index node needs to be stored, many pages may need to
be read and checked before one is found that can be used to store the row.

It is possible to avoid the preceding scenario by using logical area thresholds. The
goal is to set a threshold such that the SPAM page will show a page is full when
space is insufficient to store a full size index node.

Using the previous example, here is how to properly set logical area thresholds
to prevent excessive pages checked on an index with a 430-byte node size that is
stored on a 2-block page. To calculate the proper threshold value to use, you must
first determine how full the page can get before no more full size nodes will fit on
the page. In this example, a database page can have up to 982-430-8 = 544 bytes
in use before the page is too full. Therefore, if 544 or fewer bytes are in use, then
enough space remains to store another full size node. The threshold is then 544 /
982 = .553971, or 55%.

In addition, you can determine how full a page must be before a duplicate node
of size 112 will no longer fit. In this example, a database page can have up to
982-112-8 = 862 bytes in use before the page is too full. Therefore, if 862 or fewer
bytes are in use, then enough space remains to store another small duplicates
node. The threshold is then 862 / 982 = .8778, or 88%.

Here is an example of creating an index with the above characteristics:

SQL> CREATE INDEX TEST_INDEX ON EMPLOYEES (LAST_NAME)
cont> STORE IN RDB$SYSTEM
cont> (THRESHOLD IS (55, 55, 88));

These settings mean that any page at over 55% full will not be fetched when
inserting a full index node, however, it may be fetched when inserting the smaller
duplicates node. When the page is over 88% full then neither a full node nor a
duplicate node can be stored, so the page is set as FULL. The lowest setting is
not used and so can be set to any value less than or equal to the lowest used
threshold.

Note that the compression algorithm used on regular tables that have
compression enabled does not apply to index nodes. Index nodes are not
compressed like data rows and will always utilize the number of bytes that
is specified in the node size. Do not attempt to take into account a compression
factor when calculating thresholds for indexes.

Documentation Corrections, Additions and Changes 4–35

4.9.13 RDM$BIND_MAX_DBR_COUNT Documentation Clarification
Appendix A in Oracle Rdb7 Guide to Database Performance and Tuning
incorrectly describes the use of the RDM$BIND_MAX_DBR_COUNT logical
name.

Following is an updated description. Note that the difference in actual behavior
between what is in the existing documentation and the software is that the logical
name only controls the number of database recovery processes created at once
during "node failure" recovery (that is, after a system or monitor crash or other
abnormal shutdown).

When an entire database is abnormally shut down (due, for example, to a system
failure), the database will have to be recovered in a "node failure" recovery mode.
This recovery will be performed by another monitor in the cluster if the database
is opened on another node or will be performed the next time the database is
opened.

The RDM$BIND_MAX_DBR_COUNT logical name and the RDB_BIND_MAX_
DBR_COUNT configuration parameter define the maximum number of database
recovery (DBR) processes to be simultaneously invoked by the database monitor
during a "node failure" recovery.

This logical name and configuration parameter apply only to databases that do
not have global buffers enabled. Databases that utilize global buffers have only
one recovery process started at a time during a "node failure" recovery.

In a node failure recovery situation with the Row Cache feature enabled
(regardless of the global buffer state), the database monitor will start a single
database recovery (DBR) process to recover the Row Cache Server (RCS) process
and all user processes from the oldest active checkpoint in the database.

4.10 Oracle Rdb7 Guide to SQL Programming
This section provides information that is missing or changed in the Oracle Rdb7
Guide to SQL Programming.

4.10.1 Location of Host Source File Generated by the SQL Precompiler
When the SQL precompiler generates host source files (for example, .c, .pas, or
.for) from the precompiler source files, it locates these files based on the Object
qualifier in the command given to the SQL precompiler.

The following examples show the location where the host source file is generated.

When the Object qualifier is not specified on the command line, the object and the
host source file take the name of the SQL precompiler with the extensions of .obj
and .c, respectively. For example:

$ sqlpre/cc scc_try_mli_successful.sc
$ dir scc_try_mli_successful.*

Directory MYDISK:[LUND]

SCC_TRY_MLI_SUCCESSFUL.C;1 SCC_TRY_MLI_SUCCESSFUL.OBJ;2
SCC_TRY_MLI_SUCCESSFUL.SC;2

Total of 3 files.

4–36 Documentation Corrections, Additions and Changes

When the Object qualifier is specified on the command line, the object and the
host source take the name given on the qualifier switch. It uses the default of the
SQL precompiler source if a filespec is not specified. It uses the defaults of .obj
and .c if the extension is not specified. If the host language is a language other
than C, it uses the appropriate host source extension (for example, .pas or .for).
The files also default to the current directory if a directory specification is not
specified. For example:

$ sqlpre/cc/obj=myobj scc_try_mli_successful.sc
$ dir scc_try_mli_successful.*

Directory MYDISK:[LUND]

SCC_TRY_MLI_SUCCESSFUL.SC;2

Total of 1 file.
$ dir myobj.*

Directory MYDISK:[LUND]

MYOBJ.C;1 MYOBJ.OBJ;2

Total of 2 files.

$ sqlpre/cc/obj=MYDISK:[lund.tmp] scc_try_mli_successful.sc
$ dir scc_try_mli_successful.*

Directory MYDISK:[LUND]

SCC_TRY_MLI_SUCCESSFUL.SC;2

Total of 1 file.
$ dir MYDISK:[lund.tmp]scc_try_mli_successful.*

Directory MYDISK:[LUND.TMP]

SCC_TRY_MLI_SUCCESSFUL.C;1 SCC_TRY_MLI_SUCCESSFUL.OBJ;2

Total of 2 files.

4.10.2 Remote User Authentication
In the Oracle Rdb7 Guide to SQL Programming, Table 15-1 indicates that implicit
authorization works from an OpenVMS platform to another OpenVMS platform
using TCP/IP. This table is incorrect. Implicit authorization only works using
DECnet in this situation.

The Oracle Rdb7 Guide to SQL Programming will be fixed in a future release.

4.10.3 Additional Information About Detached Processes
Oracle Rdb documentation omits necessary detail on running Oracle Rdb from a
detached process.

Applications run from detached processes must ensure that the OpenVMS
environment is established correctly before running Oracle Rdb, otherwise Oracle
Rdb will not execute.

Attempts to attach to a database and execute an Oracle Rdb query from
applications running as detached processes will result in an error similar to
the following:

%RDB-F-SYS_REQUEST, error from system services request
-SORT-E-OPENOUT, error opening [file] as output
-RMS-F-DEV, error in device name or inappropriate device type for operation

The problem occurs because a detached process does not normally have the logical
names SYS$LOGIN or SYS$SCRATCH defined.

Documentation Corrections, Additions and Changes 4–37

There are two methods that can be used to correct this:

• Solution 1:

Use the DCL command procedure RUN_PROCEDURE to run the
ACCOUNTS application:

RUN_PROCEDURE.COM includes the single line:

$ RUN ACCOUNTS_REPORT

Then execute this procedure using this command:

$ RUN/DETACH/AUTHORIZE SYS$SYSTEM:LOGINOUT/INPUT=RUN_
PROCEDURE

This solution executes SYS$SYSTEM:LOGINOUT so that the command
language interface (DCL) is activated. This causes the logical names
SYS$LOGIN and SYS$SCRATCH to be defined for the detached process.
The /AUTHORIZE qualifier also ensures that the users’ process quota limits
(PQLs) are used from the system authorization file rather than relying on the
default PQL system parameters, which are often insufficient to run Oracle
Rdb.

• Solution 2:

If DCL is not desired, and SYS$LOGIN and SYS$SCRATCH are not defined,
then prior to executing any Oracle Rdb statement, you should define the
following logical names:

• RDMS$BIND_WORK_FILE

Define this logical name to allow you to reduce the overhead of disk I/O
operations for matching operations when used in conjunction with the
RDMS$BIND_WORK_VM logical name. If the virtual memory file is too
small then overflow to disk will occur at the disk and directory location
specified by RDMS$BIND_WORK_FILE.

For more information on RDMS$BIND_WORK_FILE and RDMS$BIND_
WORK_VM, see the Oracle Rdb Guide to Database Performance and
Tuning.

• SORTWORK0, SORTWORK1, and so on

The OpenVMS Sort/Merge utility (SORT/MERGE) attempts to create sort
work files in SYS$SCRATCH. If the SORTWORK logical names exist, the
utility will not require the SYS$SCRATCH logical. However, note that
not all queries will require sorting, and that some sorts will be completed
in memory and so will not necessarily require disk space.

If you use the logical RDMS$BIND_SORT_WORKFILES, you will need to
define further SORTWORK logical names as described in the Oracle Rdb
Guide to Database Performance and Tuning.

You should also verify that sufficient process quotas are specified on the
RUN/DETACH command line, or defined as system PQL parameters to
allow Oracle Rdb to execute.

4–38 Documentation Corrections, Additions and Changes

4.11 Guide to Using Oracle SQL/Services Client APIs
The following information describes Oracle SQL/Services documentation errors or
omissions.

• The Guide to Using Oracle SQL/Services Client APIs does not describe
changes to size and format of integer and floating-point data types

Beginning with Oracle SQL/Services V5.1, the size and format of some integer
and floating-point data types is changed as follows:

• Trailing zeros occur in fixed-point numeric data types with SCALE
FACTOR.

Trailing zeros are now included after the decimal point up to the
number of digits specified by the SCALE FACTOR. In versions of Oracle
SQL/Services previous to V5.1, at most one trailing zero was included
where the value was a whole number.

The following examples illustrate the changes using a field defined as
INTEGER(3):

V5.1 and Versions previous
higher to V5.1
-------- -----------------
1.000 1.0
23.400 23.4
567.890 567.89

• Trailing zeros occur in floating-point data types. Trailing zeros are now
included in the fraction, and leading zeros are included in the exponent,
up to the maximum precision available, for fields assigned the REAL and
DOUBLE PRECISION data types.

Versions previous
Data Type V5.1 and higher to V5.1
---------------- ---------------------- -----------------
REAL 1.2340000E+01 1.234E+1
DOUBLE PRECISION 5.678900000000000E+001 5.6789E+1

• Size of TINYINT and REAL data types is changed.

The maximum size of the TINYINT and REAL data types is changed to
correctly reflect the precision of the respective data types.

The following table shows the maximum lengths of the data types now
and in previous versions:

V5.1 and Versions previous
Data type higher to V5.1
---------- -------- -----------------
TINYINT 4 6
REAL 15 24

• The Guide to Using Oracle SQL/Services Client APIs does not describe that
the sqlsrv_associate() service returns SQL error code -1028 when connecting
to a database service if the user has not been granted the right to attach to
the database.

When a user connects to a database service, the sqlsrv_associate() service
completes with the SQL error code -1028, SQL_NO_PRIV, if the user has been
granted access to the Oracle SQL/Services service, but has not been granted
the right to attach to the database. A record of the failure is written to the
executor process’s log file. Note that the sqlsrv_associate() service completes

Documentation Corrections, Additions and Changes 4–39

with the Oracle SQL/Services error code -2034, SQLSRV_GETACCINF if the
user has not been granted access to the Oracle SQL/Services service.

4–40 Documentation Corrections, Additions and Changes

5
Known Problems and Restrictions

This chapter describes problems and restrictions relating to Oracle Rdb Release
7.1.4, and includes workarounds where appropriate.

5.1 Known Problems and Restrictions in All Interfaces
This section describes known problems and restrictions that affect all interfaces
for Release 7.1.

5.1.1 RDO IMPORT Does Not Support FORWARD_REFERENCES Created by
SQL EXPORT

Recent versions of SQL EXPORT have included support for new features as they
are added to Oracle Rdb. In particular, SQL now generates forward references for
routines to allow references in the metadata prior to those routines being created.
No such enhancements will be made to RDO IMPORT.

Due to changes in the CREATE STORAGE MAP statement for this release, the
RDO IMPORT command is no longer able to process interchange (.RBR) files
created by SQL EXPORT due to forward references to new storage mapping
routines. See the Oracle Rdb 7.1.4 Release Notes, Enhancement Chapter for
details.

Note

The RDO IMPORT command has been deprecated since the release of
Oracle Rdb V7.0. Oracle recommends that users change all scripts to use
the SQL IMPORT command in the future.

The following example shows the reported error:

$ RDO
IMPORT ’thresh_alter_sql’ INTO ’thresh’ DICTIONARY IS NOT USED.
%RDO-W-UNSIMPORT, RDO IMPORT does not support all Oracle Rdb features, please
use SQL IMPORT
Exported by Oracle Rdb V7.1-301 Import/Export utility
A component of Oracle Rdb SQL V7.1-301

.

.

.
IMPORTing STORAGE AREA: RDB$SYSTEM
IMPORTing STORAGE AREA: AREA1
IMPORTing STORAGE AREA: AREA2
IMPORTing STORAGE AREA: DEFAULT_AREA
%RDO-E-EXTRADATA, unexpected data at the end of the RBR file

Known Problems and Restrictions 5–1

With the current release, you can work around this problem in one of the
following ways:

1. Change the command to execute the SQL IMPORT command. This is the
recommended and long term solution to this problem.

2. Change the SQL EXPORT command to include the NO FORWARD_
REFERENCES clause. This will eliminate the definitions which currently
cause errors in RDO IMPORT. However, this interchange file may then not
contain sufficient information to fully import the database.

3. The RMU/LOAD command can also be used to extract the data for individual
tables. You must use the /MATCH_NAME qualifier for Load.

5.1.2 New Attributes Saved by RMU/LOAD Incompatible With Prior Versions
Bug 2676851

To improve the behavior of unloading views, Oracle Rdb Release 7.1.2 changed the
way view columns were unloaded so that attributes for view computed columns,
COMPUTED BY and AUTOMATIC columns were saved. These new attributes
are not accepted by prior releases of Oracle Rdb.

The following example shows the reported error trying to load a file from V7.1.2
under V7.1.0.4.

%RMU-F-NOTUNLFIL, Input file was not created by RMU UNLOAD
%RMU-I-DATRECSTO, 0 data records stored.
%RMU-F-FTL_LOAD, Fatal error for LOAD operation at 21-OCT-2003 16:34:54.20

You can workaround this problem by using the /RECORD_DEFINITION qualifier
and specifying the FORMAT=DELIMITED option. However, this technique does
not support LIST OF BYTE VARYING column unloading.

5.1.3 RDMS-E-RTNSBC_INITERR, Cannot init. external routine server site
executor

Execution of an external function or procudure with server site binding may
unexpectedly fail.

The following example shows this problem.

%RDB-E-EXTFUN_FAIL, external routine failed to compile or execute successfully
-RDMS-E-EXTABORT, routine NNNNNNNNN execution has been aborted
-RDMS-E-RTNSBC_INITERR, Cannot init. external routine server site executor;
reason XX

In this example, NNNNNNNNN is the function name and XX is a decimal value
such as 41.

While such errors are possible they are very unlikely to be seen, especially
on systems that have had Rdb successfully installed. These errors usually
indicate a problem with the environment. For instance, ensure that images
RDMXSMvv.EXE, RDMXSRvv.EXE and RDMXSMPvv.EXE (where vv is the
Rdb version) are installed and have the correct protections, as in the following
example.

Directory DISK$:<SYS6.SYSCOMMON.SYSLIB>

RDMXSM70.EXE;3 183 8-APR-2004 09:37:31.36 (RWED,RWED,RWED,RE)
RDMXSMP70.EXE;3 159 8-APR-2004 09:37:31.54 (RWED,RWED,RWED,RE)
RDMXSR70.EXE;3 67 8-APR-2004 09:37:31.74 (RWED,RWED,RWED,RE)

Total of 3 files, 409 blocks.

5–2 Known Problems and Restrictions

DISK$:<SYS6.SYSCOMMON.SYSLIB>.EXE
RDMXSM70;3 Open Hdr Shared Lnkbl

DISK$:<SYS6.SYSCOMMON.SYSLIB>.EXE
RDMXSMP70;3 Open Hdr Shared Prot Lnkbl Safe

DISK$:<SYS6.SYSCOMMON.SYSLIB>.EXE
RDMXSR70;3 Open Hdr Shared Lnkbl

5.1.4 SYSTEM-F-INSFMEM Fatal Error With SHARED MEMORY IS SYSTEM or
LARGE MEMORY IS ENABLED in Galaxy Environment

When using the GALAXY SUPPORT IS ENABLED feature in an OpenVMS
Galaxy environment, a %SYSTEM-F-INSFMEM, insufficient dynamic memory error
may be returned when mapping record caches or opening the database. One
source of this problem specific to a Galaxy configuration is running out of Galaxy
Shared Memory regions. For Galaxy systems, GLX_SHM_REG is the number
of shared memory region structures configured into the Galaxy Management
Database (GMDB).

While the default value (for OpenVMS versions through at least V7.3-1) of 64
regions might be adequate for some installations, sites using a larger number of
databases or row caches when the SHARED MEMORY IS SYSTEM or LARGE
MEMORY IS ENABLED features are enabled may find the default insufficient.

If a %SYSTEM-F-INSFMEM, insufficient dynamic memory error is returned when
mapping record caches or opening databases, Oracle Corporation recommends
that you increase the GLX_SHM_REG parameter by 2 times the sum of the
number of row caches and number of databases that might be accessed in the
Galaxy at one time. As the Galaxy shared memory region structures are not very
large, setting this parameter to a higher than required value does not consume
a significant amount of physical memory. It also may avoid a later reboot of the
Galaxy environment. This parameter must be set on all nodes in the Galaxy.

Galaxy Reboot Required

Changing the GLX_SHM_REG system parameter requires that the
OpenVMS Galaxy environment be booted from scratch. That is, all nodes
in the Galaxy must be shut down and then the Galaxy reformed by
starting each instance.

5.1.5 Oracle Rdb and OpenVMS ODS-5 Volumes
The OpenVMS Version 7.2 release introduced an Extended File Specifications
feature, which consists of two major components:

• A new, optional, volume structure, ODS-5, which provides support for file
names that are longer and have a greater range of legal characters than in
previous versions of OpenVMS.

• Support for ‘‘deep’’ directory trees.

ODS-5 was introduced primarily to provide enhanced file sharing capabilities for
users of Advanced Server for OpenVMS 7.2 (formerly known as PATHWORKS for
OpenVMS), as well as DCOM and JAVA applications.

In some cases, Oracle Rdb performs its own file and directory name parsing and
explicitly requires ODS-2 (the traditional OpenVMS volume structure) file and
directory name conventions to be followed. Because of this knowledge, Oracle
does not support any Oracle Rdb database file components (including root files,
storage area files, after image journal files, record cache backing store files,

Known Problems and Restrictions 5–3

database backup files, after image journal backup files, etc.) that utilize any
non-ODS-2 file naming features. For this reason, Oracle recommends that Oracle
Rdb database components not be located on ODS-5 volumes.

Oracle does support Oracle Rdb database file components on ODS-5 volumes
provided that all of these files and directories used by Oracle Rdb strictly follow
the ODS-2 file and directory name conventions. In particular, all file names must
be specified entirely in uppercase and ‘‘special’’ characters in file or directory
names are forbidden.

5.1.6 Optimization of Check Constraints
Bug 1448422

When phrasing constraints using the "CHECK" syntax, a poorer strategy can
be chosen by the optimizer than when the same or similar constraint is phrased
using referential integrity (PRIMARY and FOREIGN KEY) constraints.

For example, I have two tables T1 and T2, both with one column, and I wish to
ensure that all values in table T1 exist in T2. Both tables have an index on the
referenced field. I could use a PRIMARY KEY constraint on T2 and a FOREIGN
KEY constraint on T1.

SQL> alter table t2
cont> alter column f2 primary key not deferrable;
SQL> alter table t1
cont> alter column f1 references t2 not deferrable;

When deleting from the PRIMARY KEY table, Rdb will only check for rows in the
FOREIGN KEY table where the FOREIGN KEY has the deleted value. This can
be seen as an index lookup on T1 in the retrieval strategy.

SQL> delete from t2 where f2=1;
Get Temporary relation Retrieval by index of relation T2
Index name I2 [1:1]

Index only retrieval of relation T1
Index name I1 [1:1]

%RDB-E-INTEG_FAIL, violation of constraint T1_FOREIGN1 caused operation to fail

The failure of the constraint is not important. What is important is that Rdb
efficiently detects that only those rows in T1 with the same values as the deleted
row in T2 can be affected.

It is necessary sometimes to define this type of relationship using CHECK
constraints. This could be necessary because the presence of NULL values in the
table T2 precludes the definition of a primary key on that table. This could be
done with a CHECK constraint of the form:

SQL> alter table t1
cont> alter column f1
cont> check (f1 in (select * from t2)) not deferrable;
SQL> delete from t2 where f2=1;
Get Temporary relation Retrieval by index of relation T2
Index name I2 [1:1]

Cross block of 2 entries
Cross block entry 1
Index only retrieval of relation T1
Index name I1 [0:0]

Cross block entry 2
Conjunct Aggregate-F1 Conjunct
Index only retrieval of relation T2
Index name I2 [0:0]

%RDB-E-INTEG_FAIL, violation of constraint T1_CHECK1 caused operation to fail

5–4 Known Problems and Restrictions

The cross block is for the constraint evaluation. This retrieval strategy indicates
that to evaluate the constraint, the entire index on table T1 is being scanned and
for each key, the entire index in table T2 is being scanned. The behavior can be
improved somewhat by using an equality join condition in the select clause of the
constraint:

SQL> alter table t1
cont> alter column f1
cont> check (f1 in (select * from t2 where f2=f1))
cont> not deferrable;

or:

SQL> alter table t1
cont> alter column f1
cont> check (f1=(select * from t2 where f2=f1))
cont> not deferrable;

In both cases the retrieval strategy will look like this:

SQL> delete from t2 where f2=1;
Get Temporary relation Retrieval by index of relation T2
Index name I2 [1:1]

Cross block of 2 entries
Cross block entry 1
Index only retrieval of relation T1
Index name I1 [0:0]

Cross block entry 2
Conjunct Aggregate-F1 Conjunct
Index only retrieval of relation T2
Index name I2 [1:1]

%RDB-E-INTEG_FAIL, violation of constraint T1_CHECK1 caused operation to fail

While the entire T1 index is scanned, at least the value from T1 is used to
perform an index lookup on T2.

These restrictions result from semantic differences in the behavior of the "IN" and
"EXISTS" operators with respect to null handling, and the complexity of dealing
with non-equality join conditions.

To improve the performance of this type of integrity check on larger tables, it is
possible to use a series of triggers to perform the constraint check. The following
triggers perform a similar check to the constraints above.

SQL> create trigger t1_insert
cont> after insert on t1
cont> when (not exists (select * from t2 where f2=f1))
cont> (error) for each row;
SQL> create trigger t1_update
cont> after update on t1
cont> when (not exists (select * from t2 where f2=f1))
cont> (error) for each row;
SQL> ! A delete trigger is not needed on T1.
SQL> create trigger t2_delete
cont> before delete on t2
cont> when (exists (select * from t1 where f1=f2))
cont> (error) for each row;
SQL> create trigger t2_modify
cont> after update on t2
cont> referencing old as t2o new as t2n
cont> when (exists (select * from t1 where f1=t2o.f2))
cont> (error) for each row;
SQL> ! An insert trigger is not needed on T2.

Known Problems and Restrictions 5–5

The strategy for a delete on T2 is now:

SQL> delete from t2 where f2=1;
Aggregate-F1 Index only retrieval of relation T1
Index name I1 [1:1]

Temporary relation Get Retrieval by index of relation T2
Index name I2 [1:1]

%RDB-E-TRIG_INV_UPD, invalid update; encountered error condition defined for
trigger
-RDMS-E-TRIG_ERROR, trigger T2_DELETE forced an error

The trigger strategy is the index only retrieval displayed first. You will note that
the index on T1 is used to examine only those rows that may be affected by the
delete.

Care must be taken when using this workaround as there are semantic
differences in the operation of the triggers, the use of "IN" and "EXISTS",
and the use of referential integrity constraints.

This workaround is useful where the form of the constraint is more complex, and
cannot be phrased using referential integrity constraints. For example, if the
application is such that the value in table T1 may be spaces or NULL to indicate
the absence of a value, the above triggers could easily be modified to allow for
these semantics.

5.1.7 Using Databases from Releases Earlier Than V6.0
You cannot convert or restore databases earlier than V6.0 directly to V7.1. The
RMU Convert command for V7.1 supports conversions from V6.0 through V7.0
only. If you have a V3.0 through V5.1 database, you must convert it to at least
V6.0 and then convert it to V7.1. For example, if you have a V4.2 database,
convert it first to at least V6.0, then convert the resulting database to V7.1.

If you attempt to convert a database created prior to V6.0 directly to V7.1, Oracle
RMU generates an error.

5.1.8 Carryover Locks and NOWAIT Transaction Clarification
In NOWAIT transactions, the BLAST (Blocking AST) mechanism cannot be used.
For the blocking user to receive the BLAST signal, the requesting user must
request the locked resource with WAIT (which a NOWAIT transaction does not
do). Oracle Rdb defines a resource called NOWAIT, which is used to indicate that
a NOWAIT transaction has been started. When a NOWAIT transaction starts,
the user requests the NOWAIT resource. All other database users hold a lock on
the NOWAIT resource so that when the NOWAIT transaction starts, all other
users are notified with a NOWAIT BLAST. The BLAST causes blocking users to
release any carryover locks. There can be a delay before the transactions with
carryover locks detect the presence of the NOWAIT transaction and release their
carryover locks. You can detect this condition by examining the stall messages.
If the "Waiting for NOWAIT signal (CW)" stall message appears frequently, the
application is probably experiencing a decrease in performance, and you should
consider disabling the carryover lock behavior.

5–6 Known Problems and Restrictions

5.1.9 Unexpected Results Occur During Read-Only Transactions on a Hot
Standby Database

When using Hot Standby, it is typical to use the standby database for reporting,
simple queries, and other read-only transactions. If you are performing these
types of read-only transactions on a standby database, be sure you can tolerate
a READ COMMIT level of isolation. This is because the Hot Standby database
might be updated by another transaction before the read-only transaction
finishes, and the data retrieved might not be what you expected.

Because Hot Standby does not write to the snapshot files, the isolation level
achieved on the standby database for any read-only transaction is a READ
COMMITED transaction. This means that nonrepeatable reads and phantom
reads are allowed during the read-only transaction:

• Nonrepeatable read operations: Allows the return of different results within
a single transaction when an SQL operation reads the same row in a table
twice. Nonrepeatable reads can occur when another transaction modifies and
commits a change to the row between transactions. Because the standby
database will update the data when it confirms a transaction has been
committed, it is very possible to see an SQL operation on a standby database
return different results.

• Phantom read operations: Allows the return of different results within a
single transaction when an SQL operation retrieves a range of data values
(or similar data existence check) twice. Phantoms can occur if another
transaction inserted a new record and committed the insertion between
executions of the range retrieval. Again, because the standby database may
do this, phantom reads are possible.

Thus, you cannot rely on any data read from the standby database to remain
unchanged. Be sure your read-only transactions can tolerate a READ COMMIT
level of isolation before you implement procedures that read and use data from a
standby database.

5.1.10 Both Application and Oracle Rdb Using SYS$HIBER
In application processes that use Oracle Rdb and the $HIBER system service
(possibly through RTL routines such as LIB$WAIT), the application must ensure
that the event being waited for has actually occurred. Oracle Rdb uses $HIBER
/$WAKE sequences for interprocess communications particularly when the ALS
(AIJ Log Server) feature is enabled.

The use of the $WAKE system service by Oracle Rdb can interfere with other
users of $HIBER (such as the routine LIB$WAIT) that do not check for event
completion, possibly causing a $HIBER to be unexpectedly resumed without
waiting at all.

To avoid these situations, consider altering the application to use a code sequence
that avoids continuing without a check for the operation (such as a delay or a
timer firing) being complete.

The following pseudo-code shows how a flag can be used to indicate that a timed-
wait has completed correctly. The wait does not complete until the timer has
actually fired and set TIMER_FLAG to TRUE. This code relies on ASTs being
enabled.

Known Problems and Restrictions 5–7

ROUTINE TIMER_WAIT:
BEGIN
! Clear the timer flag
TIMER_FLAG = FALSE
! Schedule an AST for sometime in the future
STAT = SYS$SETIMR (TIMADR = DELTATIME, ASTRTN = TIMER_AST)
IF STAT <> SS$_NORMAL
THEN BEGIN

LIB$SIGNAL (STAT)
END

! Hibernate. When the $HIBER completes, check to make
! sure that TIMER_FLAG is set indicating that the wait
! has finished.
WHILE TIMER_FLAG = FALSE
DO BEGIN

SYS$HIBER()
END

END
ROUTINE TIMER_AST:

BEGIN
! Set the flag indicating that the timer has expired
TIMER_FLAG = TRUE
! Wake the main-line code
STAT = SYS$WAKE ()
IF STAT <> SS$_NORMAL
THEN BEGIN

LIB$SIGNAL (STAT)
END

END

The LIB$K_NOWAKE flag can be specified when using the OpenVMS LIB$WAIT
routine to allow an alternate wait scheme (using the $SYNCH system service)
that can avoid potential problems with multiple code sequences using the
$HIBER system service.

5.1.11 Bugcheck Dump Files with Exceptions at COSI_CHF_SIGNAL
In certain situations, Oracle Rdb bugcheck dump files indicate an exception at
COSI_CHF_SIGNAL. This location is, however, not the address of the actual
exception. The actual exception occurred at the previous call frame on the stack
(the one listed as the next Saved PC after the exception).

For example, consider the following bugcheck file stack information:

$ SEARCH RDSBUGCHK.DMP "EXCEPTION","SAVED PC","-F-","-E-"

***** Exception at 00EFA828 : COSI_CHF_SIGNAL + 00000140
%COSI-F-BUGCHECK, internal consistency failure
Saved PC = 00C386F0 : PSIINDEX2JOINSCR + 00000318
Saved PC = 00C0BE6C : PSII2BALANCE + 0000105C
Saved PC = 00C0F4D4 : PSII2INSERTT + 000005CC
Saved PC = 00C10640 : PSII2INSERTTREE + 000001A0

.

.

.

In this example, the exception actually occurred at PSIINDEX2JOINSCR offset
00000318. If you have a bugcheck dump with an exception at COSI_CHF_
SIGNAL, it is important to note the next "Saved PC" because it is needed when
working with Oracle Rdb Worldwide Support.

5–8 Known Problems and Restrictions

5.1.12 Read-only Transactions Fetch AIP Pages Too Often
Oracle Rdb read-only transactions fetch Area Inventory Pages (AIP) to ensure
that the logical area has not been modified by an exclusive read-write transaction.
This check is needed because an exclusive read-write transaction does not write
snapshot pages and these pages may be needed by the read-only transaction.

Because AIPs are always stored in the RDB$SYSTEM area, reading the AIP
pages could represent a significant amount of I/O to the RDB$SYSTEM area for
some applications. Setting the RDB$SYSTEM area to read-only can avoid this
problem, but it also prevents other online operations that might be required by
the application so it is not a viable workaround in all cases.

This problem has been reduced in Oracle Rdb release 7.0. The AIP entries
are now read once and then are not read again unless they need to be. This
optimization requires that the carry-over locks feature be enabled (this is the
default setting). If carry over locks are not enabled, this optimization is not
enabled and the behavior is the same as in previous releases.

5.1.13 Row Cache Not Allowed While Hot Standby Replication is Active
The row cache feature may not be enabled on a hot standby database while
replication is active. The hot standby feature will not start if row cache is
enabled.

This restriction exists because rows in the row cache are accessed via logical
dbkeys. However, information transferred to the standby database via the after
image journal facility only contains physical dbkeys. Because there is no way to
maintain rows in the cache via the hot standby processing, the row cache must be
disabled when the standby database is open and replication is active.

A new command qualifier, ROW_CACHE=DISABLED, has been added to the
RMU Open command. To open the hot standby database prior to starting
replication, use the ROW_CACHE=DISABLED qualifier on the RMU Open
command.

5.1.14 Excessive Process Page Faults and other Performance Considerations
During Oracle Rdb Sorts

Excessive hard or soft page faulting can be a limiting factor of process
performance. One factor contributing to Oracle Rdb process page faulting is
sorting operations. Common causes of sorts include the SQL GROUP BY, ORDER
BY, UNION, and DISTINCT clauses specified for a query, and index creation
operations. Defining the logical name RDMS$DEBUG_FLAGS to "RS" can help
determine when Oracle Rdb sort operations are occurring and to display the sort
keys and statistics.

Oracle Rdb includes its own copy of the OpenVMS SORT32 code within the
Oracle Rdb images and does not generally call the routines in the OpenVMS
run-time library. A copy of the SORT32 code is used to provide stability between
versions of Oracle Rdb and OpenVMS and because Oracle Rdb calls the sort
routines from executive processor mode which is difficult to do using the SORT32
shareable image. SQL IMPORT and RMU Load operations do, however, call the
OpenVMS SORT run-time library.

At the beginning of a sort operation, the SORT code allocates some memory for
working space. The SORT code uses this space for buffers, in-memory copies of
the data, and sorting trees.

Known Problems and Restrictions 5–9

SORT does not directly consider the processes quotas or parameters when
allocating memory. The effects of WSQUOTA and WSEXTENT are indirect.
At the beginning of each sort operation, the SORT code attempts to adjust the
process working set to the maximum possible size using the $ADJWSL system
service specifying a requested working set limit of %X7FFFFFFF pages (the
maximum possible). SORT then uses a value of 75% of the returned working set
for virtual memory scratch space. The scratch space is then initialized and the
sort begins.

The initialization of the scratch space generally causes page faults to access
the pages newly added to the working set. Pages that were in the working
set already may be faulted out as the new pages are faulted in. Once the sort
operation completes and SORT returns back to Oracle Rdb, the pages that may
have been faulted out of the working set are likely to be faulted back into the
working set.

When a process working set is limited by the working set quota (WSQUOTA)
parameter and the working set extent (WSEXTENT) parameter is a much larger
value, the first call to the sort routines can cause many page faults as the working
set grows. Using a value of WSEXTENT that is closer to WSQUOTA can help
reduce the impact of this case.

With some OpenVMS versions, AUTOGEN sets the SYSGEN parameter PQL_
MWSEXTENT equal to the WSMAX parameter. This means that all processes
on the system end up with WSEXTENT the same as WSMAX. Since that might
be quite high, sorting might result in excessive page faulting. You may want
to explicitly set PQL_MWSEXTENT to a lower value if this is the case on your
system.

Sort work files are another factor to consider when tuning for Oracle Rdb sort
operations. When the operation can not be done in the available memory, SORT
uses temporary disk files to hold the data as it is being sorted. The Oracle Rdb7
Guide to Database Performance and Tuning contains more detailed information
about sort work files.

The logical name RDMS$BIND_SORT_WORKFILES specifies how many work
files sort is to use if work files are required. The default is 2 and the maximum
number is 10. The work files can be individually controlled by the SORTWORKn
logical names (where n is from 0 through 9). You can increase the efficiency
of sort operations by assigning the location of the temporary sort work files to
different disks. These assignments are made by using up to ten logical names,
SORTWORK0 through SORTWORK9.

Normally, SORT places work files in the your SYS$SCRATCH directory. By
default, SYS$SCRATCH is the same device and directory as the SYS$LOGIN
location. Spreading the I/O load over many disks improves efficiency as well
as performance by taking advantage of the system resources and helps prevent
disk I/O bottlenecks. Specifying that a your work files reside on separate disks
permits overlap of the SORT read/write cycle. You may also encounter cases
where insufficient space exists on the SYS$SCRATCH disk device (for example,
while Oracle Rdb builds indexes for a very large table). Using the SORTWORK0
through SORTWORK9 logical names can help you avoid this problem.

Note that SORT uses the work files for different sorted runs, and then merges the
sorted runs into larger groups. If the source data is mostly sorted, then not every
sort work file may need to be accessed. This is a possible source of confusion
because even with 10 sort work files, it is possible to exceed the capacity of the

5–10 Known Problems and Restrictions

first SORT file and the sort operation fails never having accessed the remaining 9
sort work files.

Note that the logical names RDMS$BIND_WORK_VM and RDMS$BIND_
WORK_FILE do not affect or control the operation of sort. These logical names
are used to control other temporary space allocation within Oracle Rdb.

5.1.15 Control of Sort Work Memory Allocation
Oracle Rdb uses a built-in SORT32 package to perform many sort operations.
Sometimes, these sorts exhibit a significant performance problem when
initializing work memory to be used for the sort. This behavior can be
experienced, for example, when a very large sort cardinality is estimated,
but the actual sort cardinality is small.

In rare cases, it may be desirable to artificially limit the sort package’s use of
work memory. Two logicals have been created to allow this control. In general,
there should be no need to use either of these logicals and misuse of them can
significantly impact sort performance. Oracle recommends that these logicals be
used carefully and sparingly.

The logical names are:

Table 5–1 Sort Memory Logicals

Logical Definition

RDMS$BIND_SORT_MEMORY_
WS_FACTOR

Specifies a percentage of the process’s working set limit to be used when
allocating sort memory for the built-in SORT32 package. If not defined,
the default value is 75 (representing 75%), the maximum value is 75
(representing 75%), and the minimum value is 2 (representing 2%).
Processes with vary large working set limits can sometimes experience
significant page faulting and CPU consumption while initializing sort
memory. This logical name can restrict the sort work memory to a
percentage of the processes maximum working set.

RDMS$BIND_SORT_MEMORY_
MAX_BYTES

Specifies an absolute limit to be used when allocating sort memory
for the built-in SORT32 package. If not defined, the default value is
unlimited (up to 1GB), the maximum value is 2,147,483,647 and the
minimum value is 32,768.

5.1.16 The Halloween Problem
When a cursor is processing rows selected from a table, it is possible that another
separate query can interfere with the retrieval of the cursor by modifying the
index columns key values used by the cursor.

For instance, if a cursor selects all EMPLOYEES with LAST_NAME >= ’M’, it
is likely that the query will use the sorted index on LAST_NAME to retrieve
the rows for the cursor. If an update occurs during the processing of the cursor
which changes the LAST_NAME of an employee from "Mason" to "Rickard", then
it is possible that that employee row will be processed twice. First when it is
fetched with name "Mason", and then later when it is accessed by the new name
"Rickard".

The Halloween problem is a well known problem in relational databases. Access
strategies which optimize the I/O requirements, such as Index Retrieval, can be
subject to this problem. Interference from queries by other sessions are avoided
by locking and are controlled by the ISOLATION LEVEL options in SQL, or the
CONCURRENCY/CONSISTENCY options in RDO/RDML.

Known Problems and Restrictions 5–11

Oracle Rdb avoids this problem if it knows that the cursors subject table will be
updated. For example, if the SQL syntax UPDATE ... WHERE CURRENT OF is
used to perform updates of target rows, or the RDO/RDML MODIFY statement
uses the context variable for the stream. Then the optimizer will choose an
alternate access strategy if an update can occur which may cause the Halloween
problem. This can be seen in the access strategy in Example 2-2 as a "Temporary
relation" being created to hold the result of the cursor query.

When you use interactive or dynamic SQL, the UPDATE ... WHERE CURRENT
OF or DELETE ... WHERE CURRENT OF statements will not be seen until after
the cursor is declared and opened. In these environments, you must use the FOR
UPDATE clause to specify that columns selected by the cursor will be updated
during cursor processing. This is an indication to the Rdb optimizer so that it
protects against the Halloween problem in this case. This is shown in Example
2-1 and Example 2-2.

The following example shows that the EMP_LAST_NAME index is used for
retrieval. Any update performed will possibly be subject to the Halloween
problem.

SQL> set flags ’strategy’;
SQL> declare emp cursor for
cont> select * from employees where last_name >= ’M’
cont> order by last_name;
SQL> open emp;
Conjunct Get Retrieval by index of relation EMPLOYEES
Index name EMP_LAST_NAME [1:0]

SQL> close emp;

The following example shows that the query specifies that the column LAST_
NAME will be updated by some later query. Now the optimizer protects the
EMP_LAST_NAME index used for retrieval by using a "Temporary Relation" to
hold the query result set. Any update performed on LAST_NAME will now avoid
the Halloween problem.

SQL> set flags ’strategy’;
SQL> declare emp2 cursor for
cont> select * from employees where last_name >= ’M’
cont> order by last_name
cont> for update of last_name;
SQL> open emp2;
Temporary relation Conjunct Get
Retrieval by index of relation EMPLOYEES
Index name EMP_LAST_NAME [1:0]

SQL> close emp2;

When you use the SQL precompiler, or the SQL module language compiler it can
be determined from usage that the cursor context will possibly be updated during
the processing of the cursor because all cursor related statements are present
within the module. This is also true for the RDML/RDBPRE precompilers when
you use the DECLARE_STREAM and START_STREAM statements and use the
same stream context to perform all MODIFY and ERASE statements.

The point to note here is that the protection takes place during the open of the
SQL cursor (or RDO stream), not during the subsequent UPDATE or DELETE.

If you execute a separate UPDATE query which modifies rows being fetched from
the cursor then the actual rows fetched will depend upon the access strategy
chosen by the Rdb optimizer. As the query is separate from the cursors query (i.e.
doesn’t reference the cursor context), then the optimizer does not know that the

5–12 Known Problems and Restrictions

cursor selected rows are potentially updated and so cannot perform the normal
protection against the Halloween problem.

5.2 SQL Known Problems and Restrictions
This section describes known problems and restrictions for the SQL interface for
release 7.1.

5.2.1 Interchange File (RBR) Created by Oracle Rdb Release 7.1 Not
Compatible With Previous Releases

To support the large number of new database attributes and objects, the protocol
used by SQL EXPORT and SQL IMPORT has been enhanced to support more
protocol types. Therefore, this format of the Oracle Rdb release 7.1 interchange
files can no longer be read by older versions of Oracle Rdb.

Oracle Rdb continues to provide upward compatibility for interchange files
generated by older versions.

Oracle Rdb has never supported backward compatibility, however, it was
sometimes possible to use an interchange file with an older version of IMPORT.
However, this protocol change will no longer permit this usage.

5.2.2 System Relation Change for International Database Users
Due to an error in creating the RDB$FIELD_VERSIONS system relation, another
system relation, RDB$STORAGE_MAP_AREAS, cannot be accessed if the session
character sets are not set to DEC_MCS.

This problem prevents the new Oracle Rdb GUIs, specifically the Oracle Rdb
Schema Manager, from viewing indexes and storage maps from existing Oracle
Rdb databases.

The problem can be easily corrected by executing the following SQL statement
after attaching to the database:

SQL> UPDATE RDB$FIELD_VERSIONS SET RDB$FIELD_SUB_TYPE = 32767
cont> WHERE RDB$FIELD_NAME = ’RDB$AREA_NAME’;

5.2.3 Single Statement LOCK TABLE is Not Supported for SQL Module
Language and SQL Precompiler

The new LOCK TABLE statement is not currently supported as a single
statement within the module language or embedded SQL language compiler.

Instead you must enclose the statement in a compound statement. That is, use
BEGIN... END around the statement as shown in the following example. This
format provides all the syntax and flexibility of LOCK TABLE.

This restriction does not apply to interactive or dynamic SQL.

The following extract from the module language listing file shows the reported
error if you use LOCK TABLE as a single statement procedure. The other
procedure in the same module is acceptable because it uses a compound statement
that contains the LOCK TABLE statement.

Known Problems and Restrictions 5–13

1 MODULE sample_test
2 LANGUAGE C
3 PARAMETER COLONS
4
5 DECLARE ALIAS FILENAME ’mf_personnel’
6
7 PROCEDURE a (SQLCODE);
8 LOCK TABLE employees FOR EXCLUSIVE WRITE MODE;
%SQL-F-WISH_LIST, (1) Feature not yet implemented - LOCK TABLE requires compound
statement
9
10 PROCEDURE b (SQLCODE);
11 BEGIN
12 LOCK TABLE employees FOR EXCLUSIVE WRITE MODE;
13 END;

To workaround this problem of using LOCK TABLE for SQL module language
or embedded SQL application, use a compound statement in an EXEC SQL
statement.

5.2.4 Multistatement or Stored Procedures May Cause Hangs
Long-running multistatement or stored procedures can cause other users in the
database to hang if the procedures obtain resources needed by those other users.
Some resources obtained by the execution of a multistatement or stored procedure
are not released until the multistatement or stored procedure finishes. Thus,
any-long running multistatement or stored procedure can cause other processes
to hang. This problem can be encountered even if the statement contains SQL
COMMIT or ROLLBACK statements.

The following example demonstrates the problem. The first session enters an
endless loop; the second session attempts to backup the database but hangs
forever.

5–14 Known Problems and Restrictions

Session 1:

SQL> attach ’filename MF_PERSONNEL’;
SQL> create function LIB$WAIT (in real by reference)
cont> returns integer;
cont> external name LIB$WAIT location ’SYS$SHARE:LIBRTL.EXE’
cont> language general general parameter style variant;
SQL> commit;

.

.

.
$ SQL
SQL> attach ’filename MF_PERSONNEL’;
SQL> begin
cont> declare :LAST_NAME LAST_NAME_DOM;
cont> declare :WAIT_STATUS integer;
cont> loop
cont> select LAST_NAME into :LAST_NAME
cont> from EMPLOYEES where EMPLOYEE_ID = ’00164’;
cont> rollback;
cont> set :WAIT_STATUS = LIBWAIT (5.0);
cont> set transaction read only;
cont> end loop;
cont> end;

Session 2:

$ RMU/BACKUP/LOG/ONLINE MF_PERSONNEL MF_PERSONNEL

From a third session, you can see that the backup process is waiting
for a lock held in the first session:

$ RMU/SHOW LOCKS /MODE=BLOCKING MF_PERSONNEL
.
.
.

Resource: nowait signal

ProcessID Process Name Lock ID System ID Requested Granted
--------- --------------- --------- -------- --------- -------
20204383 RMU BACKUP..... 5600A476 00010001 CW NL
2020437B SQL............ 3B00A35C 00010001 PR PR

There is no workaround for this restriction. When the multistatement or stored
procedure finishes execution, the resources needed by other processes are
released.

5.2.5 Use of Oracle Rdb from Shareable Images
If code in the image initialization routine of a shareable image makes any calls
into Oracle Rdb, through SQL or any other means, access violations or other
unexpected behavior may occur if Oracle Rdb images have not had a chance to do
their own initialization.

To avoid this problem, applications must take one of the following steps:

• Do not make Oracle Rdb calls from the initialization routines of shareable
images.

• Link in such a way that the RDBSHR.EXE image initializes first. You can
do this by placing the reference to RDBSHR.EXE and any other Oracle Rdb
shareable images last in the linker options file.

This is not a bug; it is a restriction resulting from the way OpenVMS image
activation works.

Known Problems and Restrictions 5–15

5.3 Oracle RMU Known Problems and Restrictions
This section describes known problems and restrictions for the RMU interface for
release 7.1.

5.3.1 RMU/BACKUP MAX_FILE_SIZE Option Has Been Disabled
The MAX_FILE_SIZE option of the RMU/BACKUP/DISK_FILE qualifier for
backup to multiple disk files has been temporarily disabled since it creates
corrupt RBF files if the maximum file size in megabytes is exceeded and a new
RBF file is created. It also does not give a unique name to the new RBF file but
creates an RBF file with the same name but a new version number in the same
disk directory. This will cause an RMU-F-BACFILCOR error on the restore and
the restore will not complete.

The multi-file disk backup and restore will succeed if this option is not used. If
this option is specified, a warning message is now output that this qualifier will
be ignored.

The following example shows that the MAX_FILE_SIZE option, when used with
the /DISK_FILE qualifier on an RMU/BACKUP, will be ignored and a warning
message will be output.

$ RMU/BACKUP /ONLINE -
/NOCRC -
/NOLOG -
/NOINCREMENTAL -
/QUIET_POINT -
TEST_DB_DIR:TEST_DB

-
BACKUP_DIR_1:TEST_DB/DISK_FILE=(WRITER_THREADS=3,MAX_FILE_SIZE=10) ,-
BACKUP_DIR_2:/DISK_FILE=(WRITER_THREADS=3,MAX_FILE_SIZE=10) ,-
BACKUP_DIR_3:/DISK_FILE=(WRITER_THREADS=3,MAX_FILE_SIZE=10)

%RMU-W-DISABLEDOPTION, The MAX_FILE_SIZE option is temporarily disabled
and will be ignored

As a workaround to avoid this problem, do not specify the MAX_FILE_SIZE
option with the /DISK_FILE qualifier.

5.3.2 RMU Convert Fails When Maximum Relation ID is Exceeded
If, when relation IDs are assigned to new system tables during an RMU
Convert of an Oracle Rdb V7.0 database to a V7.1 database, the maximum
relation ID of 8192 allowed by Oracle Rdb is exceeded, the fatal error %RMU-
F-RELMAXIDBAD is displayed and the database is rolled back to V70. Contact
your Oracle support representative if you get this error. Note that when the
database is rolled back, the fatal error %RMU-F-CVTROLSUC is displayed to
indicate that the rollback was successful but caused by the detection of a fatal
error and not requested by the user.

This condition only occurs if there are an extremely large number of tables
defined in the database or if a large number of tables were defined but have
subsequently been deleted.

The following example shows both the %RMU-F-RELMAXIDBAD error message
if the allowed database relation ID maximum of 8192 is exceeded and the %RMU-
F-CVTROLSUC error message when the database has been rolled back to V7.0
since it cannot be converted to V7.1:

5–16 Known Problems and Restrictions

$rmu/convert mf_personnel
%RMU-I-RMUTXT_000, Executing RMU for Oracle Rdb V7.1-00
Are you satisfied with your backup of
DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1 and your backup of
any associated .aij files [N]? Y
%RMU-I-LOGCONVRT, database root converted to current structure level
%RMU-F-RELMAXIDBAD, ROLLING BACK CONVERSION - Relation ID exceeds maximum
8192 for system table RDB$RELATIONS

%RMU-F-CVTROLSUC, CONVERT rolled-back for
DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1 to version V7.0

The following example shows the normal case when the maximum allowed
relation ID is not exceeded:

$rmu/convert mf_personnel
%RMU-I-RMUTXT_000, Executing RMU for Oracle Rdb V7.1-00
Are you satisfied with your backup of
DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1 and your backup of
any associated .aij files [N]? Y
%RMU-I-LOGCONVRT, database root converted to current structure level
%RMU-S-CVTDBSUC, database DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1
successfully converted from version V7.0 to V7.1
%RMU-I-CVTCOMSUC, CONVERT committed for
DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1 to version V7.1

5.3.3 RMU Unload /After_Journal Requires Accurate AIP Logical Area
Information

The RMU Unload /After_Journal command uses the on-disk area inventory pages
(AIPs) to determine the appropriate type of each logical area when reconstructing
logical dbkeys for records stored in mixed-format storage areas. However, the
logical area type information in the AIP is generally unknown for logical areas
created prior to Oracle Rdb release 7.0.1. If the RMU Unload /After_Journal
command cannot determine the logical area type for one or more AIP entries,
a warning message is displayed for each such area and may ultimately return
logical dbkeys with a 0 (zero) area number for records stored in mixed-format
storage areas.

In order to update the on-disk logical area type in the AIP, the RMU Repair
utility must be used. The INITIALIZE=LAREA_PARAMETERS=optionfile
qualifier option file can be used with the TYPE qualifier. For example, to repair
the EMPLOYEES table of the MF_PERSONNEL database, you would create an
options file that contains the following line:

EMPLOYEES /TYPE=TABLE

For partitioned logical areas, the AREA=name qualifier can be used to identify
the specific storage areas that are to be updated. For example, to repair the
EMPLOYEES table of the MF_PERSONNEL database for the EMPID_OVER
storage area only, you would create an options file that contains the following
line:

EMPLOYEES /AREA=EMPID_OVER /TYPE=TABLE

The TYPE qualifier specifies the type of a logical area. The following keywords
are allowed:

• TABLE

Specifies that the logical area is a data table. This would be a table created
using the SQL CREATE TABLE syntax.

• B-TREE

Known Problems and Restrictions 5–17

Specifies that the logical area is a B-tree index. This would be an index
created using the SQL CREATE INDEX TYPE IS SORTED syntax.

• HASH

Specifies that the logical area is a hash index. This would be an index created
using the SQL CREATE INDEX TYPE IS HASHED syntax.

• SYSTEM

Specifies that the logical area is a system record that is used to identify hash
buckets. Users cannot explicitly create these types of logical areas.

Note

This type should NOT be used for the RDB$SYSTEM logical areas. This
type does NOT identify system relations.

• BLOB

Specifies that the logical area is a BLOB repository.

There is no explicit error checking of the type specified for a logical area.
However, an incorrect type may cause the RMU Unload /After_Journal command
to be unable to correctly return valid, logical dbkeys.

5.3.4 Do Not Use HYPERSORT with RMU Optimize After_Journal Command
The OpenVMS Alpha V7.1 operating system introduced the high-performance
Sort/Merge utility (also known as HYPERSORT). This utility takes advantage of
the OpenVMS Alpha architecture to provide better performance for most sort and
merge operations.

The high-performance Sort/Merge utility supports a subset of the SOR routines.
Unfortunately, the high-performance Sort/Merge utility does not support several
of the interfaces used by the RMU Optimize After_Journal command. In addition,
the high-performance Sort/Merge utility reports no error or warning when being
called with the unsupported options used by the RMU Optimize After_Journal
command.

Because of this, the use of the high-performance Sort/Merge utility is not
supported for the RMU Optimize After_Journal command. Do not define the
logical name SORTSHR to reference HYPERSORT.EXE.

5.3.5 Changes in EXCLUDE and INCLUDE Qualifiers for RMU Backup
The RMU Backup command no longer accepts both the Include and Exclude
qualifiers in the same command. This change removes the confusion over exactly
what gets backed up when Include and Exclude are specified on the same line,
but does not diminish the capabilities of the RMU Backup command.

To explicitly exclude some storage areas from a backup, use the Exclude qualifier
to name the storage areas to be excluded. This causes all storage areas to be
backed up except for those named by the Exclude qualifier.

Similarly, the Include qualifier causes only those storage areas named by the
qualifier to be backed up. Any storage area not named by the Include qualifier
is not backed up. The Noread_only and Noworm qualifiers continue to cause
read-only storage areas and WORM storage areas to be omitted from the backup
even if these areas are explicitly listed by the Include qualifier.

5–18 Known Problems and Restrictions

Another related change is in the behavior of EXCLUDE=*. In previous versions,
EXCLUDE=* caused all storage areas to be backed up. Beginning with V7.1,
EXCLUDE=* causes only a root backup to be done. A backup created by using
EXCLUDE=* can be used only by the RMU Restore Only_Root command.

5.3.6 RMU Backup Operations Should Use Only One Type of Tape Drive
When using more than one tape drive for an RMU Backup command, all of the
tape drives must be of the same type (for example, all the tape drives must be
TA90s or TZ87s or TK50s). Using different tape drive types (for example, one
TK50 and one TA90) for a single database backup operation may make database
restoration difficult or impossible.

Oracle RMU attempts to prevent using different tape drive densities during a
backup operation, but is not able to detect all invalid cases and expects that all
tape drives for a backup are of the same type.

As long as all of the tapes used during a backup operation can be read by the
same type of tape drive during a restore operation, the backup is likely valid.
This may be the case, for example, when using a TA90 and a TA90E.

Oracle Corporation recommends that, on a regular basis, you test your backup
and recovery procedures and environment using a test system. You should
restore the database and then recover using AIJs to simulate failure recovery of
the production system.

Consult the Oracle Rdb7 Guide to Database Maintenance, the Oracle Rdb7 Guide
to Database Design and Definition, and the Oracle RMU Reference Manual for
additional information about Oracle Rdb backup and restore operations.

5.3.7 RMU/VERIFY Reports PGSPAMENT or PGSPMCLST Errors
RMU/VERIFY may sometimes report PGSPAMENT or PGSPMCLST errors when
verifying storage areas. These errors indicate that the Space Area Management
(SPAM) page fullness threshold for a particular data page does not match the
actual space usage on the data page. For a further discussion of SPAM pages,
consult the Oracle Rdb7 Guide to Database Maintenance.

In general, these errors will not cause any adverse affect on the operation of the
database. There is potential for space on the data page to not be totally utilized,
or for a small amount of extra I/O to be expended when searching for space in
which to store new rows. But unless there are many of these errors then the
impact should be negligible.

It is possible for these inconsistencies to be introduced by errors in Oracle
Rdb. When those cases are discovered, Oracle Rdb is corrected to prevent the
introduction of the inconsistencies. It is also possible for these errors to be
introduced during the normal operation of Oracle Rdb. The following scenario can
leave the SPAM pages inconsistent:

1. A process inserts a row on a page, and updates the threshold entry on the
corresponding SPAM page to reflect the new space utilization of the data
page. The data page and SPAM pages are not flushed to disk.

2. Another process notifies the first process that it would like to access the
SPAM page being held by the process. The first process flushes the SPAM
page changes to disk and releases the page. Note that it has not flushed the
data page.

Known Problems and Restrictions 5–19

3. The first process then terminates abnormally (for example, from the DCL
STOP/IDENTIFICATION command). Since that process never flushed the
data page to disk, it never wrote the changes to the Recovery Unit Journal
(RUJ) file. Since there were no changes in the RUJ file for that data page
then the Database Recovery (DBR) process did not need to roll back any
changes to the page. The SPAM page retains the threshold update change
made above even though the data page was never flushed to disk.

While it would be possible to create mechanisms to ensure that SPAM pages do
not become out of synch with their corresponding data pages, the performance
impact would not be trivial. Since these errors are relatively rare and the impact
is not significant, then the introduction of these errors is considered to be part of
the normal operation of Oracle Rdb. If it can be proven that the errors are not
due to the scenario above, then Oracle Product Support should be contacted.

PGSPAMENT and PGSPMCLST errors may be corrected by doing any one of the
following operations:

• Recreate the database by performing:

1. SQL EXPORT

2. SQL DROP DATABASE

3. SQL IMPORT

• Recreate the database by performing:

1. RMU/BACKUP

2. SQL DROP DATABASE

3. RMU/RESTORE

• Repair the SPAM pages by using the RMU/REPAIR command. Note that
the RMU/REPAIR command does not write its changes to an after-image
journal (AIJ) file. Therefore, Oracle recommends that a full database backup
be performed immediately after using the RMU/REPAIR command.

5.4 Known Problems and Restrictions in All Interfaces for Release
7.0 and Earlier

The following problems and restrictions from release 7.0 and earlier still exist.

5.4.1 Converting Single-File Databases
Because of a substantial increase in the database root file information for V7.0,
you should ensure that you have adequate disk space before you use the RMU
Convert command with single-file databases and V7.0 or higher.

The size of the database root file of any given database increases a minimum of
13 blocks and a maximum of 597 blocks. The actual increase depends mostly on
the maximum number of users specified for the database.

5.4.2 Row Caches and Exclusive Access
If a table has a row-level cache defined for it, the Row Cache Server (RCS) may
acquire a shared lock on the table and prevent any other user from acquiring a
Protective or Exclusive lock on that table.

5–20 Known Problems and Restrictions

5.4.3 Exclusive Access Transactions May Deadlock with RCS Process
If a table is frequently accessed by long running transactions that request READ
/WRITE access reserving the table for EXCLUSIVE WRITE and if the table has
one or more indexes, you may experience deadlocks between the user process and
the Row Cache Server (RCS) process.

There are at least three suggested workarounds to this problem:

• Reserve the table for SHARED WRITE

• Close the database and disable row cache for the duration of the exclusive
transaction

• Change the checkpoint interval for the RCS process to a time longer than the
time required to complete the batch job and then trigger a checkpoint just
before the batch job starts. Set the interval back to a smaller interval after
the checkpoint completes.

5.4.4 Strict Partitioning May Scan Extra Partitions
When you use a WHERE clause with the less than (<) or greater than (>)
operator and a value that is the same as the boundary value of a storage map,
Oracle Rdb scans extra partitions. A boundary value is a value specified in the
WITH LIMIT OF clause. The following example, executed while the logical name
RDMS$DEBUG_FLAGS is defined as "S", illustrates the behavior:

ATTACH ’FILENAME MF_PERSONNEL’;
CREATE TABLE T1 (ID INTEGER, LAST_NAME CHAR(12), FIRST_NAME CHAR(12));
CREATE STORAGE MAP M FOR T1 PARTITIONING NOT UPDATABLE
STORE USING (ID)
IN EMPIDS_LOW WITH LIMIT OF (200)
IN EMPIDS_MID WITH LIMIT OF (400)
OTHERWISE IN EMPIDS_OVER;
INSERT INTO T1 VALUES (150,’Boney’,’MaryJean’);
INSERT INTO T1 VALUES (350,’Morley’,’Steven’);
INSERT INTO T1 VALUES (300,’Martinez’,’Nancy’);
INSERT INTO T1 VALUES (450,’Gentile’,’Russ’);
SELECT * FROM T1 WHERE ID > 400;
Conjunct Get Retrieval sequentially of relation T1
Strict Partitioning: part 2 3
ID LAST_NAME FIRST_NAME
450 Gentile Russ
1 row selected

In the previous example, partition 2 does not need to be scanned. This does
not affect the correctness of the result. Users can avoid the extra scan by using
values other than the boundary values.

5.4.5 Restriction When Adding Storage Areas with Users Attached to
Database

If you try to interactively add a new storage area where the page size is less than
the existing page size and the database has been manually opened or users are
active, the add operation fails with the following error:

%RDB-F-SYS_REQUEST, error from system services request
-RDMS-F-FILACCERR, error opening database root DKA0:[RDB]TEST.RDB;1
-SYSTEM-W-ACCONFLICT, file access conflict

Known Problems and Restrictions 5–21

You can make this change only when no users are attached to the database and,
if the database is set to OPEN IS MANUAL, the database is closed. Several
internal Oracle Rdb data structures are based on the minimum page size and
these structures cannot be resized if users are attached to the database.

Furthermore, because this particular change is not recorded in the AIJ, any
recovery scenario fails. Note also that if you use .aij files, you must backup the
database and restart after-image journaling because this change invalidates the
current AIJ recovery.

5.4.6 Support for Single-File Databases to Be Dropped in a Future Release
Oracle Rdb currently supports both single-file and multifile databases on all
platforms. However, single-file databases will not be supported in a future release
of Oracle Rdb. At that time, Oracle Rdb will provide the means to easily convert
single-file databases to multifile databases.

Oracle Rdb recommends that users with single-file databases perform the
following actions:

• Use the Oracle RMU commands, such as Backup and Restore, to make
copies, backup, or move single-file databases. Do not use operating system
commands to copy, back up, or move databases.

• Create new databases as multifile databases even though single-file databases
are supported.

5.4.7 Multiblock Page Writes May Require Restore Operation
If a node fails while a multiblock page is being written to disk, the page in
the disk becomes inconsistent, and is detected immediately during failover.
(Failover is the recovery of an application by restarting it on another computer.)
The problem is rare, and occurs because only single-block I/O operations are
guaranteed by OpenVMS to be written atomically. This problem has never been
reported by any customer and was detected only during stress tests in our labs.

Correct the page by an area-level restore operation. Database integrity is not
compromised, but the affected area is not available until the restore operation
completes.

A future release of Oracle Rdb will provide a solution that guarantees multiblock
atomic write operations. Cluster failovers will automatically cause the recovery of
multiblock pages, and no manual intervention will be required.

5.4.8 Replication Option Copy Processes Do Not Process Database Pages
Ahead of an Application

When a group of copy processes initiated by the Replication Option (formerly
Data Distributor) begins running after an application has begun modifying
the database, the copy processes catch up to the application and are not able
to process database pages that are logically ahead of the application in the
RDB$CHANGES system relation. The copy processes all align waiting for the
same database page and do not move on until the application has released it.
The performance of each copy process degrades because it is being paced by the
application.

When a copy process completes updates to its respective remote database, it
updates the RDB$TRANSFERS system relation and then tries to delete any
RDB$CHANGES rows not needed by any transfers. During this process, the
RDB$CHANGES table cannot be updated by any application process, holding

5–22 Known Problems and Restrictions

up any database updates until the deletion process is complete. The application
stalls while waiting for the RDB$CHANGES table. The resulting contention
for RDB$CHANGES SPAM pages and data pages severely impacts performance
throughput, requiring user intervention with normal processing.

This is a known restriction in V4.0 and higher. Oracle Rdb uses page locks as
latches. These latches are held only for the duration of an action on the page and
not to the end of transaction. The page locks also have blocking asynchronous
system traps (ASTs) associated with them. Therefore, whenever a process
requests a page lock, the process holding that page lock is sent a blocking AST
(BLAST) by OpenVMS. The process that receives such a blocking AST queues the
fact that the page lock should be released as soon as possible. However, the page
lock cannot be released immediately.

Such work requests to release page locks are handled at verb commit time.
An Oracle Rdb verb is an Oracle Rdb query that executes atomically, within a
transaction. Therefore, verbs that require the scan of a large table, for example,
can be quite long. An updating application does not release page locks until its
verb has completed.

The reasons for holding on to the page locks until the end of the verb are
fundamental to the database management system.

5.5 SQL Known Problems and Restrictions for Oracle Rdb Release
7.0 and Earlier

The following problems and restrictions from Oracle Rdb Release 7.0 and earlier
still exist.

5.5.1 SQL Does Not Display Storage Map Definition After Cascading Delete of
Storage Area

When you drop a storage area using the CASCADE keyword and that storage
area is not the only area to which the storage map refers, the SHOW STORAGE
MAP statement no longer shows the placement definition for that storage map.

The following example demonstrates this restriction:

SQL> SHOW STORAGE MAP DEGREES_MAP1
DEGREES_MAP1

For Table: DEGREES1
Compression is: ENABLED
Partitioning is: NOT UPDATABLE
Store clause: STORE USING (EMPLOYEE_ID)

IN DEG_AREA WITH LIMIT OF (’00250’)
OTHERWISE IN DEG_AREA2

SQL> DISCONNECT DEFAULT;
SQL> -- Drop the storage area, using the CASCADE keyword.
SQL> ALTER DATABASE FILENAME MF_PERSONNEL
cont> DROP STORAGE AREA DEG_AREA CASCADE;
SQL> -- Display the storage map definition.
SQL> ATTACH ’FILENAME MF_PERSONNEL’;
SQL> SHOW STORAGE MAP DEGREES_MAP1
DEGREES_MAP1 For Table: DEGREES1
Compression is: ENABLED
Partitioning is: NOT UPDATABLE

The other storage area, DEG_AREA2, still exists, even though the SHOW
STORAGE MAP statement does not display it.

Known Problems and Restrictions 5–23

A workaround is to use the RMU Extract command with the Items=Storage_Map
qualifier to see the mapping.

5.5.2 ARITH_EXCEPT or Incorrect Results Using LIKE IGNORE CASE
When you use LIKE...IGNORE CASE, programs linked under Oracle Rdb V4.2
and V5.1, but run under higher versions of Oracle Rdb, may result in incorrect
results or %RDB-E-ARITH_EXCEPT exceptions.

To work around the problem, avoid using IGNORE CASE with LIKE or recompile
and relink under a higher version (V6.0 or higher.)

5.5.3 Different Methods of Limiting Returned Rows from Queries
You can establish the query governor for rows returned from a query by using
either the SQL SET QUERY LIMIT statement or a logical name. This note
describes the differences between the two mechanisms.

If you define the RDMS$BIND_QG_REC_LIMIT logical name to a small value,
the query often fails with no rows returned regardless of the value assigned to
the logical. The following example demonstrates setting the limit to 10 rows and
the resulting failure:

$ DEFINE RDMS$BIND_QG_REC_LIMIT 10
$ SQL$
SQL> ATTACH ’FILENAME MF_PERSONNEL’;
SQL> SELECT EMPLOYEE_ID FROM EMPLOYEES;
%RDB-F-EXQUOTA, Oracle Rdb runtime quota exceeded
-RDMS-E-MAXRECLIM, query governor maximum limit of rows has been reached

Interactive SQL must load its metadata cache for the table before it can process
the SELECT statement. In this example, interactive SQL loads its metadata
cache to allow it to check that the column EMPLOYEE_ID really exists for the
table. The queries on the Oracle Rdb system relations RDB$RELATIONS and
RDB$RELATION_FIELDS exceed the limit of rows.

Oracle Rdb does not prepare the SELECT statement, let alone execute it. Raising
the limit to a number less than 100 (the cardinality of EMPLOYEES) but more
than the number of columns in EMPLOYEES (that is, the number of rows to read
from the RDB$RELATION_FIELDS system relation) is sufficient to read each
column definition.

To see an indication of the queries executed against the system relations, define
the RDMS$DEBUG_FLAGS logical name as "S" or "B".

If you set the row limit using the SQL SET QUERY statement and run the same
query, it returns the number of rows specified by the SQL SET QUERY statement
before failing:

SQL> ATTACH ’FILENAME MF_PERSONNEL’;
SQL> SET QUERY LIMIT ROWS 10;
SQL> SELECT EMPLOYEE_ID FROM EMPLOYEES;
EMPLOYEE_ID
00164
00165

.

.

.
00173
%RDB-E-EXQUOTA, Oracle Rdb runtime quota exceeded
-RDMS-E-MAXRECLIM, query governor maximum limit of rows has been reached

5–24 Known Problems and Restrictions

The SET QUERY LIMIT specifies that only user queries be limited to 10 rows.
Therefore, the queries used to load the metadata cache are not restricted in any
way.

Like the SET QUERY LIMIT statement, the SQL precompiler and
module processor command line qualifiers (QUERY_MAX_ROWS and
SQLOPTIONS=QUERY_MAX_ROWS) only limit user queries.

Keep the differences in mind when limiting returned rows using the logical name
RDMS$BIND_QG_REC_LIMIT. They may limit more queries than are obvious.
This is important when using 4GL tools, the SQL precompiler, the SQL module
processor, and other interfaces that read the Oracle Rdb system relations as part
of query processing.

5.5.4 Suggestions for Optimal Use of SHARED DATA DEFINITION Clause for
Parallel Index Creation

The CREATE INDEX process involves the following steps:

1. Process the metadata.

2. Lock the index name.

Because new metadata (which includes the index name) is not written to
disk until the end of the index process, Oracle Rdb must ensure index name
uniqueness across the database during this time by taking a special lock on
the provided index name.

3. Read the table for sorting by selected index columns and ordering.

4. Sort the key data.

5. Build the index (includes partitioning across storage areas).

6. Write new metadata to disk.

Step 6 is the point of conflict with other index definers because the system
relation and indexes are locked like any other updated table.

Multiple users can create indexes on the same table by using the RESERVING
table_name FOR SHARED DATA DEFINITION clause of the SET
TRANSACTION statement. For optimal usage of this capability, Oracle Rdb
suggests the following guidelines:

• You should commit the transaction immediately after the CREATE INDEX
statement so that locks on the table are released. This avoids lock conflicts
with other index definers and improves overall concurrency.

• By assigning the location of the temporary sort work files SORTWORK0,
SORTWORK1, ... , SORTWORK9 to different disks for each parallel process
that issues the SHARED DATA DEFINITION statement, you can increase the
efficiency of sort operations. This minimizes any possible disk I/O bottlenecks
and allows overlap of the SORT read/write cycle.

• If possible, enable global buffers and specify a buffer number large enough to
hold a sufficient amount of table data. However, do not define global buffers
larger than the available system physical memory. Global buffers allow
sharing of database pages and thus result in disk I/O savings. That is, pages
are read from disk by one of the processes and then shared by the other index
definers for the same table, reducing the I/O load on the table.

Known Problems and Restrictions 5–25

• If global buffers are not used, ensure that enough local buffers exist to keep
much of the index cached (use the RDM$BIND_BUFFERS logical name or the
NUMBER OF BUFFERS IS clause in SQL to change the number of buffers).

• To distribute the disk I/O load, store the storage areas for the indexes on
separate disk drives. Note that using the same storage area for multiple
indexes results in contention during the index creation (Step 5) for SPAM
pages.

• Consider placing the .ruj file for each parallel definer on its own disk or an
infrequently used disk.

• Even though snapshot I/O should be minimal, consider disabling snapshots
during parallel index creation.

• Refer to the Oracle Rdb7 Guide to Database Performance and Tuning to
determine the appropriate working set values for each process to minimize
excessive paging activity. In particular, avoid using working set parameters
where the difference between WSQUOTA and WSEXTENT is large. The
SORT utility uses the difference between these two values to allocate scratch
virtual memory. A large difference (that is, the requested virtual memory
grossly exceeds the available physical memory) may lead to excessive page
faulting.

• The performance benefits of using SHARED DATA DEFINITION can best
be observed when creating many indexes in parallel. The benefit is in the
average elapsed time, not in CPU or I/O usage. For example, when two
indexes are created in parallel using the SHARED DATA DEFINITION
clause, the database must be attached twice, and the two attaches each use
separate system resources.

• Using the SHARED DATA DEFINITION clause on a single-file database or
for indexes defined in the RDB$SYSTEM storage area is not recommended.

The following table displays the elapsed time benefit when creating multiple
indexes in parallel with the SHARED DATA DEFINITION clause. The table
shows the elapsed time for ten parallel process index creations (Index1, Index2,
... Index10) and one process with ten sequential index creations (All10). In
this example, global buffers are enabled and the number of buffers is 500. The
longest time for a parallel index creation is Index7 with an elapsed time of
00:02:34.64, compared to creating ten indexes sequentially with an elapsed time
of 00:03:26.66. The longest single parallel create index elapsed time is shorter
than the elapsed time of creating all ten of the indexes serially.

Table 5–2 Elapsed Time for Index Creations

Index Create Job Elapsed Time

Index1 00:02:22.50

Index2 00:01:57.94

Index3 00:02:06.27

Index4 00:01:34.53

Index5 00:01:51.96

Index6 00:01:27.57

(continued on next page)

5–26 Known Problems and Restrictions

Table 5–2 (Cont.) Elapsed Time for Index Creations

Index Create Job Elapsed Time

Index7 00:02:34.64

Index8 00:01:40.56

Index9 00:01:34.43

Index10 00:01:47.44

All10 00:03:26.66

5.5.5 Side Effect When Calling Stored Routines
When calling a stored routine, you must not use the same routine to calculate
argument values by a stored function. For example, if the routine being called
is also called by a stored function during the calculation of an argument value,
passed arguments to the routine may be incorrect.

The following example shows a stored procedure P being called during the
calculation of the arguments for another invocation of the stored procedure P:

SQL> create module M
cont> language SQL
cont>
cont> procedure P (in :a integer, in :b integer, out :c integer);
cont> begin
cont> set :c = :a + :b;
cont> end;
cont>
cont> function F () returns integer
cont> comment is ’expect F to always return 2’;
cont> begin
cont> declare :b integer;
cont> call P (1, 1, :b);
cont> trace ’returning ’, :b;
cont> return :b;
cont> end;
cont> end module;
SQL>
SQL> set flags ’TRACE’;
SQL> begin
cont> declare :cc integer;
cont> call P (2, F(), :cc);
cont> trace ’Expected 4, got ’, :cc;
cont> end;
~Xt: returning 2
~Xt: Expected 4, got 3

The result as shown above is incorrect. The routine argument values are written
to the called routine’s parameter area before complex expression values are
calculated. These calculations may (as in the example) overwrite previously
copied data.

The workaround is to assign the argument expression (in this example calling the
stored function F) to a temporary variable and pass this variable as the input for
the routine. The following example shows the workaround:

Known Problems and Restrictions 5–27

SQL> begin
cont> declare :bb, :cc integer;
cont> set :bb = F();
cont> call P (2, :bb, :cc);
cont> trace ’Expected 4, got ’, :cc;
cont> end;
~Xt: returning 2
~Xt: Expected 4, got 4

This problem will be corrected in a future version of Oracle Rdb.

5.5.6 Considerations When Using Holdable Cursors
If your applications use holdable cursors, be aware that after a COMMIT or
ROLLBACK statement is executed, the result set selected by the cursor may
not remain stable. That is, rows may be inserted, updated, and deleted by other
users because no locks are held on the rows selected by the holdable cursor after
a commit or rollback occurs. Moreover, depending on the access strategy, rows not
yet fetched may change before Oracle Rdb actually fetches them.

As a result, you may see the following anomalies when using holdable cursors in
a concurrent user environment:

• If the access strategy forces Oracle Rdb to take a data snapshot, the data
read and cached may be stale by the time the cursor fetches the data.

For example, user 1 opens a cursor and commits the transaction. User
2 deletes rows read by user 1 (this is possible because the read locks are
released). It is possible for user 1 to report data now deleted and committed.

• If the access strategy uses indexes that allow duplicates, updates to the
duplicates chain may cause rows to be skipped, or even revisited.

Oracle Rdb keeps track of the dbkey in the duplicate chain pointing to the
data that was fetched. However, the duplicates chain could be revised by the
time Oracle Rdb returns to using it.

Holdable cursors are a very powerful feature for read-only or predominantly read-
only environments. However, in concurrent update environments, the instability
of the cursor may not be acceptable. The stability of holdable cursors for update
environments will be addressed in future versions of Oracle Rdb.

You can define the logical name RDMS$BIND_HOLD_CURSOR_SNAP to
the value 1 to force all hold cursors to fetch the result set into a cached
data area. (The cached data area appears as a "Temporary Relation" in the
optimizer strategy displayed by the SET FLAGS ’STRATEGY’ statement or the
RDMS$DEBUG_FLAGS "S" flag.) This logical name helps to stabilize the cursor
to some degree.

5.5.7 AIJSERVER Privileges
For security reasons, the AIJSERVER account ("RDMAIJSERVER") is created
with only NETMBX and TMPMBX privileges. These privileges are sufficient to
start Hot Standby, in most cases.

However, for production Hot Standby systems, these privileges are not adequate
to ensure continued replication in all environments and workload situations.
Therefore, Oracle recommends that the DBA provide the following additional
privileges for the AIJSERVER account:

• ALTPRI

5–28 Known Problems and Restrictions

This privilege allows the AIJSERVER to adjust its own priority to ensure
adequate quorum (CPU utilization) to prompt message processing.

• PSWAPM

This privilege allows the AIJSERVER to enable and disable process swapping,
also necessary to ensure prompt message processing.

• SETPRV

This privilege allows the AIJSERVER to temporarily set any additional
privileges it may need to access the standby database or its server processes.

• SYSPRV

This privilege allows the AIJSERVER to access the standby database rootfile,
if necessary.

• WORLD

This privilege allows the AIJSERVER to more accurately detect standby
database server process failure and handle network failure more reliably.

Known Problems and Restrictions 5–29

